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Abstract

This paper is concerned with a comparative study of the most commonly used
attribute selection measures in the construction of decision trees. We examine the
effect of these measures on the resulting tree structures against various sampling
policies. The emphasis of earlier works in this field has been on the overall size
of the tree in terms of the number of levels and the number of leaf nodes. We take
a more informative view, encompassing the functionality of decision trees into
tree structures. The proposed evaluation criterion combines classification
proportion with the combinatorial structure. Our experiments demonstrate that the
information-based measures outperform the non-information based ones for
unpruned trees against classification proportion thresholds and most sampling
policies. Among the information-based measures, the information gain appears to
be the best. Pruning improves the performance of statistics-based measures. We
also show that there are optimal combinations between attribute selection
measures and sampling policies regarding to the best achievable classification
thresholds.

1. Introduction

Data mining refers to the process of discovering useful information patterns
implicitly embedded in databases. Various data mining approaches and solutions
have been developed [1]. Machine learning methods are widely used for
constructing models to classify data items into a group of predefined classes. A
well-known category of machine learning methods build decision trees as the
classification model.
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A decision tree takes attributes as its non-leaf internal nodes, class labels as
leaf nodes and attribute values as links between the nodes. A decision tree is built
with a set of examples, each of which consists of a list of descriptive attribute
values and a known class label. The set of examples is divided into a training set,
a test set and an evaluation set according to certain sampling policy. An initial
tree is constructed using the examples in the training set. In order not to overfit
the tree to the training examples [2], the tree is tested and pruned using the
examples in the test set. The accuracy of the decision tree is measured by error
rate in classifying the examples from the evaluation set.

Understandingly, accuracy of classification has been the main focus of
comparative studies of the effect attribute selection measures on the resulting
decision trees ([3], [4], [5], [6]). However, there has been a considerable interest
on the effect of these measures on the combinatorial structure of decision trees
evaluated in terms of the total number of levels and the total number of leaf nodes
{4, 7]. This traditional concept of structure cannot capture the true desirable
features of decision trees. Taking any two trees with different number of levels,
balanced or unbalanced, it is difficult to determine which tree is more desirable
for classification purposes. A balanced tree with less number of levels may not
necessarily be better performing than an unbalanced tree with more number of
levels. Decision trees are constructed for the sole purpose of classification, and it
seems strange not to encapsulate classification into a meaningful concept of tree
structure.

In this paper, we propose a concept for functionality structure that combines
the functionality of a decision tree with its underlying combinatorial structure.
This concept associates with each level of a decision tree a classification value
which represents the proportion of examples belonging to the evaluation set that
have been classified down to that level. Our underlying philosophy is that a tree
that can classify most of the records at levels nearer to the root should be more
desirable than other trees. For instance, a decision tree for medical diagnostics,
whose attributes relate to medical tests, that has this property helps in reducing
the number of tests for the majority of patients, and thereby reducing the cost of
decision making. We investigate the combined effects of selection measures and
sampling policies on the functionality structure of the resulting tree as determined
number of classification thresholds.

The rest of this paper is organised as follows. Section 2 briefly reviews some
common decision tree construction algorithms and attribute selection measures.
Section 3 describes the design of our experiments. The results are presented and
analysed in section 4. Section 5 concludes with major findings and future work.

2. Background

2.1. Decision tree construction algorithms

There are many algorithms for constructing decision trees. Among the most
common are CART [8], CHAID [9], ID3 [10] and C4.5 [11]. Although they
differ on certain detailed steps and/or the orders of the result trees, these
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algorithms have the same procedural framework. According to a certain selection
measure, an attribute is selected as the root of the tree. The training set is then
partitioned into subsets by the values of the selected attribute. For each subset, if
all examples are of the same class, a leaf node with the class label is created and
a branch from the root to the leaf, labelled with an appropriate value, is formed.
If not all examples in the subset are of the same class, the same selection step is
repeated for the subset. The whole construction process terminates when all
examples in the original training set have been “classified” with leaf nodes, and a
complete tree is built.

The single most important aspect that determines the specific behaviour of a
decision tree construction algorithm is the attribute selection measure [12].
CART uses the Gini index of diversity, ID3 uses the information gain, and C4.5
uses the gain ratio while CHAID uses the y’-test. These measures are expected
to result in more concise trees than that by a simple random selection of
attributes.

The problem of overfitting is dealt with by pruning the decision tree. A
number of pruning methods have been developed [2, 13]. In most cases, pruning
is done after a decision tree is constructed (post-pruning) although it is possible
to prune the tree as it grows (pre-pruning). Post-pruning is considered to be
better than pre-pruning because pre-pruning may prevent the inclusion of
potentially important attributes [6]. We use the reduced error pruning, a simple
post-pruning method. The empirical results show that this method is comparable
with other pruning methods with respect to the accuracy of the pruned tree.

2.2. Attribute selection measures

Existing attribute selection measures are either information-based using concepts
of probability and information theory, or statistics-based using hypotheses testing
frameworks. Below, we briefly describe four measures covering both categories.

2.2.1 Information gain, an information-based measure

An information system is a system of events and associated probabilities. In a
relational table, an attribute 4 is an information system with m distinct values a;,
a,, ..., a, as the possible events. For each i (1<i<m), the probability of a;, P(ay,
is the proportional frequency of g; to the total number of tuples in the table. The
average of the self-information of all events within the information system A is
called the entropy or the expected information, and defined as follows: .

m l m
H<A>=§ P(a;)log , @) =—§ P(a;)log , P(a,)

Hence, the entropy for the Class attribute with w classes (Cy, C,, ..., Cy) is

H(Class) = ZP(C Yog, ——

i=1

=3 P(C)log; P(C,)

i=1

P(C )
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The expected information of classification when an attribute 4 with values a;, a,,
..., Gy, is chosen as the root of the current decision tree is the conditional entropy
H(Class|4) and defined as:

wom wom PC: .
H(Class )= > P(C,na,)logy ——— P(CI " ZZP(C,maj)logz_(F(%;ﬁ

i=] j=1 i=l j=1

where P(C; n a) is the probability of attribute 4 having the value a; and class C..
The information gain on attribute 4 is the mutual information that exists between
the attribute Class and the attribute 4. It is calculated as

Gain(A) = H(Class) - H(Class | A).

2.2.2 Information gain ratio, an information-based measure

Information gain ratio on attribute A is the ratio of the information gain on A
over the expected information of A, normalising uncertainty across attributes. It
is defined as

H{(Class) - H(Class|A)

Gain Ratio(A) = HA)

2.2.3 Gini index, a statistics-based measure
Gini function measures the impurity of an attribute with respect to classes. The
impurity function is defined as:

Gini()= 1-Z% p/

where ¢ refers to an attribute or the Class attribute, and p; is the frequency of a
specific class. For the Class attribute with w classes, the impurity is:

Gini(Class) =1~ Y P(C;)*

=l

For an attribute 4 with m distinct values a,, ..., an,, the impurity of 4 = a; with
respect to the classes is

Gini(A=a,)=1-Y P(C,na,)?

=1

The Gini index of A, defined below, is the difference between the impurity
of Class and the average impurity of A regarding to the classes, representing
reduction of impurity over the choice of attribute A.

Ginilndex(A) = Gini(Class) ~ Z P(a,)Gini(4d=a,)
J=1
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2.2.4 Chi-square (x?) statistic, a statistic-based measure

Chi-square (x°) statistic is a measure of the degree of association or dependence
between attribute values and classes. The x* function calculates the differences
between the actual frequencies of classes in an attribute with the expected
frequencies when no association between that attribute and class is assumed. The
greater the differences, the stronger the association between the classification and
the chosen attribute. The basic expression is given as follows:

2 (xg‘—Ei )2
R

i

where x;; represents the actual frequency that examples have attribute value a; and
class c;, and E; represents the expected frequency.

3. Experiments

Our experiments aim to assess the effects of different attribute selection measures
on the classification proportions at each level of the decision trees. We do so for
both pruned and unpruned trees.

The data sets used are collected from the UCI repository for machine
learning [14]. We have selected 4 data sets of different sizes and from different
application domains. For simplicity of implementation, all examples in the data
sets have only categorical attributes without missing values. Table 1 summarises
the main characteristics of these data sets.

The examples are selected from a given data set by using the proportional
random sampling technique according to a sampling policy. Different sampling
policies have been reported in the literature ([2, 4, 5]). Table 2 lists details of all
the policies that have been used in our experiments.

Table 1. Example Data Sets for Experiments

Name No. of Classes | No. of Attributes No. of Examples
Vote 2 16 435
Tic-tac-toe 2 9 958
Car 4 6 1728
Nursery 5 8 8683
Table 2. Sampling Policies
Training Set Testing Set Evaluation Set

10% 10% 80%

15% 35% 50%

25% 25% 50%

35% 15% 50%

60% 20% 20%
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We use a generic implementation of the ID3 algorithm as the procedural
framework for constructing a decision tree. The functions for the selection
measures are called within the same program, and different decision trees are
produced. Data sets are stored in Microsoft Access tables. All selection measures
mentioned in section 2 are under investigation. We also use random selection as a
default measure against which all others are compared.

For each data set, we follow the given 5 sampling policies. To obtain more
accurate results, 3 trials were conducted for each sampling policy. In each trial,
we obtain a separate sample of the chosen proportion for a training set, a test set
and an evaluation set. For each trial, a decision tree is constructed using each of
the selection measures. The trees are then pruned.

4. Experiment Results and Analysis

The experimental work resulted in a large amount of raw data. For each
combination of parameters, we recorded a structural description of the decision
tree in terms of accumulated classification proportions against the tree levels. We
finally obtained 40 tables by averaging results over different trials and grouping
them according to the sampling policies and data sets. In most cases, this was
straightforward as all the three trials resulted in trees with equal number of levels.
In the exceptional cases where different trials produce different numbers of
levels, we chose the representative number of levels to be the number nearest to
the median of all the numbers of levels in the three trials. There was hardly any
distortion on data as a result.

We plotted the content of each table into a chart where each selection
measure is presented by a graph showing the accumulated classification
proportions against the tree levels. Figure 1 shows two such charts.

120

100 4
80
60
40
20 4
012345678910“
—e— Gain 63 | 96 | 97 | 100 —e—Gain 17 | 45 | 78 | 99 | 100
—e— GainRatio | 63 | 85 | 86 | 89 | 90 | 100 —=—GainRatio | 35 | 58 | 92 | 97 | 100
Gini 63 [ 92 |97 [100 Ghni 17 {39 | 77 | 98 | 100
s Chi Square | 64 | 64 |89 | 85 | 89 | 96 | 100 —»—ChiSquare| 55 | 72 | 87 | 94 | 100
—s-Random | 0 |37 | 56|71 |80 |85 |91 {92]94 |94 100 [-a—Random | 81 | 94 | 100
Unpruned(Vote: 25%+25%+50%) Pruned(tic-tac-toe: 10%-+10%+80%)

Figure 1. Example Charts of the Experimental Work

Close examinations of these charts reveal interesting and consistent trends
and patterns. It is extremely difficult to present and interpret these patterns
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without showing all the charts. To overcome the space limitation of this paper,
we present our results in an alternative but more convenient and comprehensible
way. We define a number of classification thresholds (TH), and for each tree we
obtain the levels at which these thresholds are reached. The levels corresponding
to each threshold are then grouped in a vector (Lvote, Lic-Tac-Toes lwcar, Linursery)s
where Lg,.me refers to the level at which the given threshold was reached for the
data set dname. Figure 2 presents 5 tables, one for each sampling policy in the
order as specified in Table 2. Each table contains the result data for both the
pruned and unpruned trees.

On each row of the unpruned / pruned section of a table, the entry vectors
that achieve the minimal total of co-ordinates are marked by bold and underlined
fonts. The marking is taken to mean that the given measure has the best
performance with respect to the given threshold. The selection measure that has
the maximum number of marked vectors in its column is declared as the best
overall performing measure for the given sampling policy. The analyses for
pruned and unpruned trees are done separately.

TH Unpruned Pruned

Gain |G. Ratio| Gini %* |Random] Gain |G.Ratio| Gini y* | Random
60% [(2.3.2.3)[(2,3.2,4)|(132.4)|(1.4.2.3) [ (3,4.3.H§(1,3,2,3){(1,3,2,3) | (1,3,2,3) | (1,2,2,4) | 2.4,1.1) |
75%}(3,4,3.4)|(2:4.3.4)1(2,4.3,5){(2,4,3,5) | (4,4,3,9](1,3.2,4) | (1,3,2,4) | (1,3,2,4) | (1,3,3,5) | (2:4.2.1) |
85% |(3.4:4.4)|(2.44.5)|(2,44.6)(3,54,5 [(7,54,5))(1,4,4,4[(1,3.3.5) | (1,4,4,4)| (1,3.3,5) | (3.5.3.1)
90% | (4,4,4,5) | (4.4.4.5) | (3.4:4.6) | (3.54.5) | (7.5,4,6)] (1.4,4,4) | (1.3,4,5) | (1,4,4,4) [ (1,4,4,6)| (3.5.3.1)
95% 1(4,4.4.5) | (6,4.4.5 (3.4.47)1(3,5,4,6)[(8,5.4,6)| (1.4.4.5) | (1.4.4.5) | (1.4.4.5)1(1,5.4.6)| (5.5.4.1)

TH Unpruned Pruned

Gain |G. Ratio| Gini x* |Random| Gain |G.Ratio| Gini ¥’ Random
60% J(2.4,.2.3)1(2,4.2,4)[(2.4.2.3)1(2,4,2,4)|(4.43.6)](1,3.2,3)[(1,3.2,4](1.3,2.3){(1,3.2,4) | 2.2.1.1)
75% |(2.4:3,4)|(2.4.3,5)|(2.4.3.4)|(2,5,2,5) (5,546 (1,4,3.41(1,4,3,5]2,4.3,3(1,3,2.9 | (34.1.1)
85% |(2,4,4.5)(2:4.4.5) | (3:4.44) | (2,5.4.6) | (5,5.4.6)§(1,4,4,4) [ (1,4,4,9 (3,444 |(1,4,2.6)| (§4.1.1)
90% 1(2,5.4.5) 1(2,5.4.5)|(3.5,4.5)1(3,5.4,6) | (6,5.4,6)1(2.4,4,5) | (2.4,4.5)|(3.4,4,5) | (1,4,4.6) | (5.4.1.1)
95% | (3.5.4.5) [ 2.5.4.6) | 3.5.4.5)[5.54.6)((6,556)](2.445](2.426)[(3:445[(1,546)| (65.1.2) |

TH Unpruned Pruned

Gain |G. Ratio| Gini v |Random] Gain |G.Ratio| Gini +> | Random
60% 1(1,4,2,4)]1(1,4,2,4)|(1.4.2,4)|(1.4.2.3)1(4,54,6)](1.4,.2,3){(1,3,2.4)[(1,4,2,3)1(1,3,2.4) | (3.1.1.1)
75% §(2,4.2.4)|(2,4,4.5) | (2.4.4.4)1(3.,5,2,5((5,5,4.6)](1,4,4.4)1(1,3,4,5)|(1.,4,4,4){(1,4,2,5)] 3.1.1.1)
85% }(2,5.4,5) | (2.54,5) | (2.5.4.5)|(3.5.4.5) | (6,5,4.6)1(2.4.4,5) | (1,4,4,5)1(2.4,4.5) | (2,5,2,6) | (4.1.1.1)
90% J(2,5.4,5)|(5,5.4.6) | (2.5.4.5)1(6,5,4,6) | (7,6,5,6)}(2,5,4.5) | (1,5,4,6) 1 (2.,4,4,5) | (2,5,4,6) | (§:2.3.1) |
95% |(2.5.5.6) | (6.5.5.6)|(3.5.5.6)(6.6.5.6) |(11,6,5,7)](2.5.4.6) | (1.5.4.6)| (3,5.4.6) | (2.5,5.6) | (5.4.3.1)

TH Unpruned Pruned

Gain |G. Ratio| Gini v |Random| Gain |G.Ratio| Gini x* | Random
60% |(2.4.2.4) [(2,4.2.4) | (2.:4.2.4) | (3,5.2,4) | (5,5.4.6)} (1,3:2.3) | (1,4.2.4) | (1.3.2.3) | (1,3,2,5) | (4,1,1.6)
75% | (3.54.4)| (3.5,4,5) | 3.5.4,5) | (4.52.5) | (7.5.4.6)| (1,444 | (1,4.4.5) (1444 | (1.4.2.6) | (6.4,1.6)
85% }(3,5.4.5)((7,5.4,6) | (3.5.4,5)|(5,5,4,6) | (8,6,5, 1)} (1,4.4.5) | (1,5,4,6) | (1.4.4.5) | (1.5.2.6) | (7.4.1,7)
90% 1(3,5,5,8)|(7,5,5,6) |(3,5.5.,5){(6,5,5.6) | (8,6,5,7)}(2.5.5,5) {(1,5,5.,6)(2,5.4,5) | (1.5.3.6) | (8.5,1,7)
95% J(3,5.5:6)1(9,5.5.6) | (3.5.5.6) (7,6,5,6)1(9,6,5,1}(2,5,5,6)](2,5.5,1(3,5.5.6) (1.54.6)] (9.6,1.1)
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TH

Unpruned Pruned

Gain |G. Ratio| Gini v} |Random| Gain |G.Ratio| Gini ¥’ Random

60%

(3.5.2.4)1(2.5.2,5){(3,5.24)|(4.5.2,4) | (4.5.4.1](2.4.2,9 (1,424 (2,42, {(1,3,2,5 | (3.2,L.1)

75%

(3.5.4.:8)(6,5.4,5) |(3.5:4.8)1(6,6,2,6) | (6,6,5,1)](2,5.4,5) | (1,5,3,5)1(2,5,4,5) | (1.5.2,6) | (4.4.1.1)

85%

(3.5,5.5)(8,5,5,6) [(3,5.5.8)1(7,6,2,6) | (6,6,5,1)1(2,5.4,5) 1(1,5,4.6)1(2,5,5,5) | (1,5,2,6) | (4.5,1.1)

90%

3.6,5,6) | (8.6,5,6) |(3.6.5:6)|(7.6.4,6)|(7,7.5,1)](3,6,5,6) | (2,5,4,6) | (3,5,5,6) | (1,5,2,D | (4,5,1,1)

95%

3.6.5.6)1(8,6.5.7)[(3:6.5.6)|(8,7,5. 1) |(11,7.57)}(3.6,5,6) | (2,6.5.7)(3.6.5,6) | (1,6,5.7) | (5.6,3.1)

Figure 2. Performance of Selection Measures Against Classfication Thresholds

Considerations of these tables lead to the following conclusions:

Unpruned Trees

>

Information based selection measures outperform the non-information based
ones across all sampling policies. This confirms the significance of
information contents over statistical values for the tree construction.

Among the information based measures, information gain achieves the best

performance in 4 out of 5 sampling policies, followed closely by Gini index

of diversity. It may seem somewhat surprising to conclude that the Gain
Ratio selection measure is outperformed by the Information Gain, when in
the literature the former has been presented as an improvement on the latter.

There are a number of plausible explanations for this discrepancy.

e At any stage of the tree construction, the Information gain measure is
biased towards the attribute that has the highest number of values in the
remaining example subset [5]. This means that the effect of attribute
choice at any stage on subsequent stages depends very much on the
relative attribute-values distributions. On the other hand, when the Gain
ratio measure is used, the effect of attribute choice at any stage on
subsequent stages is much more complex. It is possible that the relative
attribute-values distributions for the data sets, in our experiments,
resulted in greater number of examples being classified at higher levels
of the decision tree. Hence, while our conclusion goes against the
expectation when the traditional concept of structure is used it may not
be surprising when our new concept of structure is used to compare
performances. This conclusion in fact strengthens the argument for the
use of our new concept of structure.

e A close look at our results shows that except for the Nursery data set, the
performance of the Information Gain is almost identical to that of the
Gain Ratio measure. The Nursery data set is the largest among the
chosen list.

These explanations and remarks do suggest that the nature and the size of the
data set may effect the outcomes. There is a need for more research in this
direction.

Among the non-information based selection measures, x2 outperforms the

random selection. In fact, random selection has a rather poor performance

across all sampling policies, not only resulting in large trees with many
levels, but also failing to classify the majority of examples close to the root
of the tree.
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» Classification performance does not only depend on selection measures, but
also on sampling policy. The following is a list of best sampling policies for
each selection measure:

¢ Information gain - 10%-10%-80%, 15%-35%-50%, and 25%-25%-50%
e Gain ratio - 10%-10%-80%, and 15%-35%-50%

o Gini index - 15%-35%-50%

o %’ -10%-10%-80%

e Random selection - 15%-35%-50%

Pruned Trees

» Non-information based selection measures outperform the information based
ones across all sampling policies. This is probably a reflection of the fact that
pruning procedure uses statistical calculations and does not depend on any
information theory function.

» Except for the 35%-15%-50% policy, random selection appears to have the
best classification performance. However, this seemingly good performance
is offset by poor accuracy rates ([15]). In fact, the result merely indicates that
random selection leads to the construction of a large, complex and erroneous
tree, most parts of which are pruned away. In other words, much effort of
tree construction is wasted.

> The best sampling policy for x? is 35%-15%-50%.

» Excluding random selection, the information based selection measures do
have reasonably good performances with information gain performing well
especially with its preferred sampling policies as indicated above in the
unpruned case.

5. Conclusion and Future Work

In this paper, we have conducted a comparative study on the effects of different
attribute selection measures on decision tree structures by using a number of data
sets sampled with various sampling policies. We have used an effective analysis
method based on classification thresholds to cope with the large volume of
experimental data and clarify the results. We introduced a more informative
concept of decision tree structures by combining classification proportions with
the combinatorial structures of decision trees. It incorporates the functionality of
decision trees into the combinatorial structures.

Our findings indicate that the information-based measures outperform the
non-information based ones for unpruned trees on classification proportion
thresholds, with the information gain having the best performance. Pruning
improves the performance of statistics-based measures. Existing pruning methods
use statistical calculations rather than any information content-based functions.
Our findings for unpruned trees suggest that designing information based pruning
methods is an interesting task, which may lead to desirable consequences for
decision tree. It is likely that such a method would be a pre-pruning method. We
also show that classification performance is not only related to attribute selection
measures but also to the sampling policy. In fact, for each measure there exists a
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sampling policy that bring up its best potential.

More studies are needed to unfold the combined effects of sampling policies,
attribute selection measures and pruning. The variation in the numbers of
attributes of the selected data sets in our studies are not significant enough for us
to make creditable conclusions to relate the classification performance to the
number of attributes. This is another subject of future work.
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