
RULE-DIRECTED SAFETY VALIDATION OF SSI-BASED
INTERLOCKING APPLICATION DATA MODELS

CYDNEY MINKOWITZ
Alstom Ferroviaria S.p.A., Italy

ABSTRACT
The Smartlock 400 (SML400) SSI-based interlocking product is one of a family of Alstom’s railway
interlocking products which was developed as a replacement for the Solid State Interlocking (SSI)
product. A software tool has been introduced in the SML400 application engineering process to validate
the application data against safety conditions, or rather to prove that the application data does not violate
specified constraint violations. The aims when designing the tool were to: develop customized software
based on a model of the application data generated by existing tools (rather than use a generic theorem
prover, to avoid having to translate the data into another notation); use a dynamic technique similar to
symbolic execution (as the nature of the data renders it difficult to use static model checking
techniques); and employ application specific rules to make the technique manageable (i.e. to reduce the
search space of proofs). The tool has demonstrated good performance on average sized and large
interlocking applications. By customer request, it has been used principally to validate points free-to-
move (PFM) conditions; it has found known data errors caused by points being commanded without
having been tested free to move, imprecise definitions of PFM conditions and incomplete PFM tests
across interlocking boundaries. The paper begins with the motivation behind the tool’s introduction. It
describes the context of the tool, including the characteristics of the application data, the way in which
constraint violations are expressed and the operations performed by the tool. It contains descriptions of
sample rules used by the tool to optimise the proofs. It compares the tool with other tools that have been
used to verify safety properties of SSI-based data. The paper ends by proposing further work for the
enhancement and use of the tool.
Keywords: railway interlocking systems, SSI, safety-critical systems, model-based reasoning, formal
methods, VDM++.

1 INTRODUCTION
Solid State Interlocking (SSI) is the first generation processor-based interlocking developed
in the 1980s by the research division of the UK’s railway authority (British Rail at the time),
GEC-General Signal and Westinghouse Signals Ltd. There is a large base of SSI installations
in the UK. SSI has also been installed in Belgium, France, Australia, South Africa, Hong
Kong and Indonesia. In the last 20 years, Alstom (which took over GEC-General Signal) and
WRSL (formally Westinghouse Signals Ltd) have released next generation products
(respectively Smartlock and Westlock) based on SSI – in particular, both products have
adopted the language used to prepare the data for SSI applications.
 Conventionally the process for the verification and validation of SSI-based applications
involves:

 the independent manual checking of the application data;
 the automatic verification of the compiled data using diversity;
 the automatic set-to-work and independent principle testing of the data by simulation on

the interlocking and/or office PCs with software that simulates the interlocking.

 Weaknesses with this process are:

 manual checking is prone to human error;

Computers in Railways XVI 179

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

doi:10.2495/CR180161

 the verification of the compiled application data only performs checks to ensure that
application data meets run-time operational constraints of the interlocking – it does not
ensure that certain logical conditions, and in particular safety conditions, are satisfied;

 the setting up and running of tests by simulation are time consuming, and it is near on
impossible to create test scenarios that would take into account every possible exception
circumstance that could lead to a violation of a safety condition.

 These weaknesses have led to situations where SSI-based interlocking failures have
occurred on site resulting in unsafe states of the railway. These incidents have caused such
concern that railway authorities were beginning to turn away from SSI-based products. In the
UK, this resulted in Network Rail demanding more stringent safety process requirements on
the development of new SSI-based interlocking applications, obliging its data suppliers to
employ automatic tools to check for errors, specifically those related to the incorrect
specification of points free-to-move (PFM) conditions which were the root cause of all
incidents reported, and to actively engage both the railway industry and academia in the
search for a solution to check the safety of commissioned and installed SSI-based
interlockings. Most of the proposed solutions failed to convince Network Rail – some
because they concentrated on automatic testing methods that did not guarantee the expected
level of data coverage; others because they relied on the employment of general purpose
theorem proving tools that require the translation of the SSI data into another notation suitable
for static model checking and specialist skills to run them and which were judged to be of
limited practical use for large scale interlocking applications. The solution presented by
Alstom was the use of a bespoke software tool that proves the absence of violations of safety
conditions, expressed simply in an SSI-like notation, using a dynamic proof technique and
application specific heuristics on a software model already generated automatically from SSI
data by pre-existing SML400 tools. A demonstration of this tool (integrated in the SML400
SSI-based application engineering process and toolset), showing its capability of finding
known PFM related data errors (e.g. points being commanded without having been tested
free to move, imprecise definitions of PFM conditions and incomplete PFM tests across
interlocking boundaries), as well as its ability to check for the absence of PFM related errors
in complex data, not only provided Network Rail with the confidence to continue considering
Alstom as an approved supplier for future projects using the SML400 product, but it raised
sufficient interest that Network Rail has since contracted Alstom to use the tool on the data
of existing SML400 and SSI interlocking installations.

2 SML400 APPLICATION DATA
A SML400 interlocking application contains one or more central interlockings (CIXLs).
Each CIXL consists of hardware, software and communication links with other CIXLs and
other systems, such as train control systems and systems connected to trackside equipment.
SML400 application data is code that represents interlocking logic, i.e. an implementation of
the signalling requirements that a CIXL must satisfy.
 The interlocking logic is applied on zones of the signalling area that the CIXL controls.
In other words, the application data is created from code related to one or more virtual
interlockings (referred to as VIXLs). The logic for each VIXL of a CIXL is defined using a
procedural, object-centred language, which has been designed to be backwards compatible
with the language used for configuring SSI applications, where the data for one VIXL
corresponds to the data for one SSI central interlocking.
 The logic is organized into blocks of code containing tests and commands that access the
signalling object memories, which are combined together in conditions and statements, using

180 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

typical imperative language constructs. There are different types of blocks of code, which are
processed in different ways, as described in Table 1.
 The application data is interpreted on the contents of reserved areas of memories used to
record the states of the signalling functions that the CIXL controls. Iterating in cycles, the
CIXL receives indications of the current states of the signalling functions, updates the
memories accordingly as the logic demands, sends commands to control the signalling
functions to their new states, and processes requests from signallers via train control systems
(TCSs) or requests made within the application data blocks. Fig. 1 depicts the dynamic state
of the CIXL on which the application data is processed. The CIXL state comprises data
structures of different types. An image of the CIXL state represents the current values of the
state variables.
 The CIXL application data is prepared as source code. The source code syntax of the
memory tests and commands uses mnemonics oriented to signalling engineers. The syntax
also contains macros that encapsulate complex sequences of instructions. The source code is
divided in the files listed in Table 2, where there is one set of files for each VIXL of the

Table 1: SML400 application data block types.

Block type Description

SEQ
Contains code (in OPT, IPT and FOP blocks) executed in
a sequential manner every processing cycle of the CIXL

PRR
Contains code performed on a request emanating from a
train control system or from within the application data

PFM normal
PFM reverse

Evaluated whenever other blocks need to test conditions
for points being free to be moved normal or reverse

MAP
Evaluated whenever other blocks need to test certain
route related conditions

Evaluation
Execution

Evaluated/executed when called from other blocks
(similar to subroutines)

Figure 1: CIXL state.

Computers in Railways XVI 181

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

Table 2: VIXL application data source files.

File Description

OPT Prepares operating information for transmission to TFMs and other CIXLs

IPT Directs proving information to update CIXL memory

FOP Specifies processing of flags, such as subroute and suboverlap releasing

PRR Includes availability tests and commands to set and lock routes and move points

PFM Defines for each set of points conditions for them to move normal and reverse

MAP Used to search for trains in relation to given route setting and release conditions

CIXL. As indicated by their names, each file is used to define blocks of specific types. The
source code makes reference to the addresses of telegrams, used for the exchange of external
messages with trackside function modules (TFMs) and internal messages between VIXL or
between the CIXL and other CIXLs (or other external systems), and to the ids of various
signalling functions managed by the SML400T application. The source files are processed
together with internal and external communications data files, which list the telegram
addresses, and identity files, which list, for each VIXL of the CIXL, the ids of signalling
functions by type.
 Fig. 2 contains example source code (with comments) for a PRR block (in the PRR file)
used to satisfy a request from a TCS to set a route. After undergoing a series of checks and
translations (including the expansion of macros intro primitive data constructs), the source
code is compiled to Motorola S3 object code, which is programmed on a memory device to
be installed on the CIXL. Following the design of SSI, the object code instructions are
derived directly from the source code syntax, as shown by the listing in Fig. 3.
 Because Alstom has no access to definitive reference material on the SSI language, and
because the SML400 application data language was to be extended to exploit features
provided by the SML400 product, a decision was made to formally specify the new language,
in order to understand its semantics, i.e. what requirements it must satisfy to conform to the
on-line processing requirements of the CIXL (exported CIXL application data constraints)
and how it is interpreted by the CIXL, and, as a consequence, clarify its syntax [1]. The
formal specification, written using the VDM++ notation, defines, in an object-oriented
manner, the essential entities, properties and relations of the code elements processed by the
interlocking interpreter. The formal specification uses an abstract syntax to describe the
interlocking logic, in a language that is independent from both the source code and object
code notations. An example of the syntax is contained in Fig. 4, which contains (commented)
code equivalent to that expressed in Fig. 2 and Fig. 3.
 The intermediate code serves as an API to construct objects representing the application
data (in its primitive form after source code to source code translation). This object-oriented
representation renders it easier to design tools to reason about, manipulate and process the
CIXL application data. Fig. 5 illustrates how the intermediate code, and the object model
created from it, is used to verify and validate CIXL application data..
 The top of Fig. 5 shows the activities used as part of a diversified process to compile and
verify the CIXL application data. The intermediate code is used in the process as a means of
verifying that the application data object code is consistent with the source code from which

182 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

Figure 2: PRR block in source code syntax.

Figure 3: PRR block in object code syntax.

Figure 4: PRR block in intermediate code syntax.

*VMANUP.QR5(M)
 if VMANUP.R5(M) a / if route 5(M) available and
 VMANUP.P2 cnf / points 2 controlled or free to move normal
 then VMANUP.R5(M) s / then set route 5(M);
 VMANUP.P2 cn / set points 2 controlled normal;
 VMANUP.S5 clear bpull / clear signal 5 button pulled
 \
\

memory map:
VMANUP.S5 5
VMANUP.P2 2
VMANUP.R5(M) 9
block map:
VMANUP.QR5(M) 14780
instructions:
[N°14780 : 0x0001 14787 14787 => if]
[N°14781 : 0x0621 9 0 => VMANUP.R5(M) a]
[N°14782 : 0x0541 2 1 => VMANUP.P2 cnf]
[N°14783 : 0x0002 0 0 => then]
[N°14784 : 0x0620 9 0 => VMANUP.R5(M) s]
[N°14785 : 0x0541 2 0 => VMANUP.P2 cn]
[N°14786 : 0x040A 5 0 => VMANUP.S5 clear bpull]
[N°14787 : 0x0008 0 0 => \]
[N°14788 : 0x0008 0 0 => \]

data.definePRRBlock(
 "VMANUP.QR5(M)", -- block label
 data.statementList([-- block statements
 data.conditionalStatementList(
 data.conditionList([-- conditions to evaluate
 data.routeAvailableTest("VMANUP.R5(M)"),
 data.pointsNormalStateTest(-- Check,
 "VMANUP.P2", -- in points memory,
 mk_(-- if either
 { -- all data bits, comprising
 mk_token(<controlN>)}, -- controlN data bit,
 1), -- are set to 1, or
 true)]), -- points free to move.
 data.statementList([-- 'then' statements to execute
 data.setRouteCommand("R5(M)"), -- Set route memory data bit.
 data.pointsNormalStateCommand(-- Assign,
 "VMANUP.P2", -- in points memory,
 { -- all data bits, comprising
 mk_token(<controlN>)}, -- controlN data bit,
 1), -- to 1.
 data.signalStateCommand(-- Assign,
 "VMANUP.S5", -- in signal memory,
 { -- all data bits, comprising
 mk_token(<bpull>)}, -- bpull data bit,
 0)]), -- to 0.
 nil)])); -- no 'else' statements to execute

Computers in Railways XVI 183

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

Figure 5: Application data verification and validation.

it was compiled, by comparing files containing intermediate code generated independently
from the source code and the object code, and to perform a static analysis of the application
data, as an independent verification to the checks performed on the source code, to verify that
the application data meets the exported constraints. Diverse means were used to develop tools
to automate the process as described in [1]. The VDM++ specification of the SML400
application data language was used as the software design of a tool that analyses the
intermediate code (the design was translated in Common Lisp using VDM++ to Common
Lisp implementation rules and delivered as an application using LispWorks). This tool uses

184 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

the instructions in the intermediate code to build the application data objects, ensuring that
the objects satisfy the invariants defined in the specification, checks that the objects satisfy
other conditions defined in the specification, and saves the objects to a file read by other tools
that support the validation activities at the bottom of Fig. 5 (also implemented with
LispWorks using the same specification to design approach). One of these tools is used to
validate the application data of one or more VIXLs/CIXLs against logical requirements,
including safety constraints, by executing the application data models according to the
sections of the VDM++ specification that define how the CIXL interprets the SML400
language, in a test environment which simulates the interfaces between the CIXL and other
subsystems of the interlocking. As stated in the introduction, because test scenarios cannot
cover every possible circumstance that could lead to an unsafe state, another tool is used to
validate the application data by proving that there is no execution path in the object model
that would result in a CIXL state that constitutes a violation of a safety constraint. Starting
from an initial state, this latter tool performs an exhaustive search on parts of the object model
that could lead to an unsafe state, by executing those parts on that state, and all new safe
states that result from the execution, until an unsafe state is reached or all states have been
searched.

3 CONSTRAINT VIOLATIONS
Constraint violations are defined in text files using SML400-like syntax. Like the CIXL
application data, constraint violations are contained in blocks. Each constraint violation
file contains one or more violation blocks. An example of a violation block is contained in
Fig. 6.
 As seen in the figure, each violation block has a block label and contains one or more
constraint violations. The block label of each violation block in the constraint violation file
must be unique. Each constraint violation contains a list of conditions that define an unsafe
CIXL state (i.e. a CIXL state resulting from some execution path of the CIXL application

Figure 6: Violation block.

Computers in Railways XVI 185

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

data which is deemed unsafe) and an optional list of conditions that define a precondition on
the CIXL state prior to the unsafe state (i.e. the conditions that the CIXL state must satisfy in
order to run an execution path of the CIXL application data). The conditions and optional
precondition of a constraint violation are expressed in terms of tests on the contents of the
CIXL memories associated with signalling functions declared in the identity files from which
the CIXL application is created (recall Fig. 1). The memory tests access data of the memories
of various types that represent different attributes of the signalling function objects.
 To explain better, the following two clauses, expressed in natural language, paraphrase
the two constraint violations defined in Fig. 6.
 The state of the CIXL is unsafe whenever the points “201” of VIXL “OLDDALBY” are
positioned normal and at least one of the track sections “EB” and “EA” of the VIXL becomes
occupied, in the case when the points are not lying normal and/or at least one of the track
sections is already occupied.
 The state of the CIXL is unsafe whenever the points “201” of VIXL “OLDDALBY” are
positioned normal and at least one of the subroutes “EA-BC” and “EB-CA” of the VIXL is
locked, in the case when the points are not lying normal.
 In the second constraint violation, the expressions “VOLDDALBY.UEA-BC l” and
“VOLDDALBY.UEB-CA l” denote that two flags are set false, where each flag represents the
state of a subroute (a part of route over a given track section in a certain direction – if the
subroute is locked, the corresponding flag is false; if the subroute is free, the corresponding
flag is true). In the SML400 application data syntax, each object id is prefixed with a VIXL
name tag, which is composed of the upper case letter “V”, the name of the VIXL that contains
it and the full stop character “.”, and an upper case letter that signifies the type of object.
 Each constraint violation has a type, derived from the label of the violation block in which
it is contained, which is taken into account by the rules used by the validation tool. At the
time of writing, the tool has only been used to search for PFM related violations, such as the
ones defined in Fig. 6, and related subroute/suboverlap release and route release violations,
which define unsafe states related to the releasing of locked subroutes/suboverlaps once trains
pass over them and the cancelling of routes, because past experience has shown that these
types of violation are most likely to occur, however the tool has been designed in a general
way to run proofs on other types of violations. Different types of violations are expressed in
standard ways following generic or customer specific guidelines.
 The validation tool translates constraint violation files into an intermediate code format,
similar to that used for the CIXL application data. The intermediate code format comprises
an API for creating objects representing the violation blocks and the constraint violations
contained in them. The tool loads the intermediate code, creates the objects, ensuring that
they comply to specified invariants (e.g. the violation block labels are distinct, and the
constraint violations refer to signalling functions declared for the CIXL application data) and
reasons about them as it performs the proofs.

4 APPLICATION DATA VALIDATION
Fig. 7 shows the main operations that the validation tool performs to run a proof.
 The purpose of the first operation is to reduce the search space by masking out data that
is not relevant to the violation under proof. During this operation the tool performs a kind of
two phase “look-back” through the application data, starting with primary commands in the
data that could lead directly to the violation. The tool applies generic rules about logic, rules
specific to signalling and SML400 application data and rules related to the violation’s type
(examples of which are described in Section 4.1), to prevent unreachable states being

186 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

Figure 7: SML400 application data validation tool operations.

searched and false unsafe states being detected. The purpose of the second operation is to
start the search on a CIXL state that is most likely to lead to an unsafe state as quickly as
possible, by presetting the state’s variables to appropriate values deduced by the masking
operation. As an example, for PFM related violations, the tool presets flags representing
subroutes/suboverlaps (i.e. sets them as free) and therefore, in the first instance, it does not
look back on commands that set them. This is a valid start state since, in its start-up
operations, the CIXL application data should wait a specified time, to ensure that all trains
have halted before processing requests, during which time subroutes/suboverlaps will
become free if tracks are unoccupied, and it is assumed that the start-up operations and route
release conditions are validated by running the tool on related violations or by some other
means. The tool does however mask in secondary commands that set preset flags if they are
in the same statements as the primary commands in the case when they could override or
enable the primary commands.
 The tool performs the search in the third operation as described previously. For
performance reasons, the tool partitions the masked application data, and corresponding parts
of the state that the masked application data accesses, in execution contexts that it searches
separately. Each execution context contains a PRR block that commands parts of the state
that could lead to the constraint violation, or a SEQ block that directly commands data values
referred to in the constraint violation, together with all mutually dependent SEQ blocks with
statements that command parts of the state that the PRR/SEQ block tests. During the search
operation the tool simulates the CIXL execution cycles by rerunning the contexts on each
relevant safe state reached.
 The tool executes the blocks in the contexts according to the VDM++ specification. Since
the tool is meant to validate the application data that the CIXL interprets rather than the other
functions of the CIXL, including the functions that interact with TCSs and the trackside
communication systems, there are some deviations from the specification, for example in the

Computers in Railways XVI 187

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

management of request queues, external messages and elapsed timers. The tool considers that
all requests coming from a TCS are in the queue for the relevant VIXL (whereas it expects
internal requests to be queued by commands in the masked application data) and, since it
runs the execution contexts separately, it does not need to maintain an ordering of the requests
in the queues. The tool does not look back on input message tests, which means that whenever
they appear in conditions, it evaluates them as uncertain, since it has no way of determining
the contents of the messages, which causes the tool to swing in both senses of the conditional
statement lists in which the messages appear. To manage this uncertainty, the tool uses fuzzy
evaluation and efficient branching algorithms to ensure that all paths in execution contexts
are taken as and when needed, thereby forcing itself to search on all relevant images of the
CIXL state. The tool operates on ranges of timer values converted from specific values in
elapsed timer tests and commands.
 The tool may run proofs on one or more violations. As it performs its operations, it prints
information about each proof to a listing, which contains details of how it performs the mask
operation, a description of the proof, including the constraint violation under proof and the
execution contexts created for the proof. For each unsafe state reached from a given start
state, it prints to the listing a description of the start state, the execution path that led to the
unsafe state, and a description of the unsafe state. If no unsafe state is reached, or if the option
is set to continue searching after an unsafe state is reached, on completion of the proof, it
prints to the listing the results of the proof, including the number of safe states reached and
searched in the execution contexts. The tool has an option to save an image of the state prior
to the unsafe state which can be loaded by the tool that executes the application data (see Fig.
5) to examine the circumstances leading to it. The tool is capable of recovering a proof that
has been interrupted for some reason. The tool enables users to overwrite the default masking
rules, via a dialog that allows changes to the resulting selection of preset and redundant flags
and PRR/SEQ blocks masked in and out of the data.

4.1 Masking rules

The tool uses generic rules about logic to simplify masked in lists of conditional statements,
e.g. to eliminate redundant branches containing commands that would never be reached, and
to deduce redundant flags, i.e. flags that are only tested in conditional statement lists with
only one branch.
 The states of track sections are normally set according to the contents of input messages,
i.e. via commands in conditional statement lists that test input messages. Because the tool
swings on these tests as indicated above, these commands serve to generate all permutations
of track section states that the program needs to search on. To reduce the amount of swinging,
the tool imitates a practice that was necessary in early SSI applications for performance
reasons, which is to split the processing requirements for a request into separate PRR blocks
that are processed in successive execution cycles, where the split PRR blocks are chained
together via internal requests. The tool uses the same technique to split requests on artificial
internal requests to divide the workload during the search operation. Assuming that PRR
blocks test but not command track section state values, the tool moves statements of a PRR
block that test distinct track section state values into virtual PRR blocks, replacing the
statements with commands to set the artificial requests.
 From the tool’s perspective an elapsed timer can be in any state at the start of during any
execution path that it takes, so one might think that the tool should evaluate timer tests as
uncertain. However, to avoid swinging on these tests, the tool makes a judgement on timer
values based on an analysis of their ranges, considering that each timer value may be set to

188 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

one of three state values: 0 (for started), 1 (for set) and 2 (for stopped). The tool presets the
timer values to started or stopped depending on how the timers are used in the data (for
example, it assumes that elapsed timers used for managing requests over cross boundaries
are reset to stopped at the start of each execution cycle, otherwise an error would occur).
 The tool applies masking rules that are specific to applications for Network Rail to
simplify data related to track sections. One rule is applied to tests and commands that prevent
the misdetection of track section states due to bobbing conditions. The other rule (applied
only for PFM related violations) is for track sections that are duplicated across VIXL
boundaries. Both rules rely on naming conventions used for the track section ids.

5 COMPARISON WITH RELATED WORK
[2] and [3] present studies of the use of the general purpose NuSMV model checking software
to verify SSI data, whereby the data is translated automatically as a model in the SMV format
and the model is checked against specified safety properties. Only a subset of the data is
included in the model – the rest of the data is not considered safety related or is abstracted in
the model, and the model checking is done only on a single SSI application. [2] reports
difficulties in optimizing the software to provide acceptable performance without the need to
access its internal representations and concludes that a purpose-build SSI data checker,
integrated with a parser of the SSI data, would be more efficient and usable. [3] reports that
is possible to gain better performance via customization of the software’s algorithms. Both
[2] and [3] suggest that the approach would be improved if the underlying model
representation was hidden and the safety properties were automatically generated from track
layouts.
 In contrast the SML400 application data validation tool was developed as custom-made
software that operates on a model that resembles the target data that is interpreted by the
CIXL. All of the target data are represented in the model, taking into account that the misuse
of apparently non-safety related data could lead to an unsafe state. The tool addresses
performance issues by splitting the application data into manageable partitions and using
bespoke algorithms to search them efficiently, together with the use of domain-specific
heuristics (knowledge about signalling applications in general and SSI-based applications in
particular) that are derivable automatically from the types of constraint violations. These
techniques serve to limit the search space for each proof, thus making it feasible to use on
complex data.
 To give an indication of the speed of the validation tool, on a microprocessor that runs at
2.67 GHz, it takes a few minutes to prove the absence of constraint violations for the
movement, in both directions, of all sets of points in an interlocking area of medium
complexity using violation blocks akin to those in Fig. 6. For a single set of points on a track
section that allows multiple movements across interlocking boundaries, a proof takes several
days (although the time can be reduced significantly by splitting the conditions involving the
track sections and the subroutes into separate violation blocks). Even so, the performance is
favorable when compared to the time it takes to run similar test scenarios.
 The validation tool may be run on the application data of single VIXLs or on data related
to multiple VIXLs of the same CIXL or different CIXLs, thus enabling safety requirements
of data related to communicating interlockings to be checked. The validation can be
performed in phases, by running separate proofs to validate safety requirements related to
different signalling functions of different VIXLs, to enable the validation activity to be
performed in parallel.
 The key competence required to use the tool is a basic fluency in signalling to be able to
deduce, from scheme plans, unsafe conditions and to formulate them as constraint violations

Computers in Railways XVI 189

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

in the required syntax. Although it would be possible to generate the constraint violations
automatically, it is intended that the safety properties of the CIXL application data be checked
by an independent validator, i.e. the same person who is responsible for ensuring that the
right properties are validated, and hence the user of the tool would need to control the contents
of the violation blocks in any case. The validation tool is integrated in a user-friendly software
system that automates the generation and flow of files between the tools used for the
interlocking configuration activities, including those shown in Fig. 2, in a way that is
transparent to the user, so limited informatics skills are required to run the tool.

6 FUTURE WORK
Until now, the tool has been applied only to UK SSI-based applications and, following the
specific requirements from Network Rail, it has only been used to validate PFM related safety
conditions. The tool has been tried on other kinds of safety conditions, but mainly as a means
to test the genericity of its design, so the next challenge is to employ the tool on a wider set
of example data and conditions, using appropriate masking rules oriented to the signalling
principles of other countries where SSI-based interlockings are installed, building up a set of
templates to express the constraint violations in standard ways as was done with the PFM
related violations. Due to the urgency of delivering the tool for the UK market, the Network
Rail specific masking rules have been hard-coded in the tool’s software, however it would
be straightforward to enable the tool to import rules that are specific to given signalling
authorities from configuration files.
 Given that the language used to prepare SML400 application data is an extension to the
SSI language, the SML400 tools can be used on legacy SSI data without the need to rewrite
it. Because the data language for Westlock is not strictly backward compatible with SSI, it
would be interesting to see how much effort would be necessary to enable the SML400 tools
to import Westlock data to allow it to be checked with the SML400 data validator tool.

ACKNOWLEDGEMENT
Special thanks go to Don Hayward of Alstom UK for help with the identification and
formulation of the constraint violations and some application specific rules.

REFERENCES
[1] Minkowitz, C., Formal specification for design diversity: Two case histories, one

approach. ADBIS CEUR Workshop Proceedings, 639, pp. 41–60, 2010. CEUR-WS.org.
[2] Huber, M. & King, S., Towards an integrated model checker for railway signalling data.

Lecture Notes in Computer Science, 2391, Springer: Berlin, 2002.
[3] Busard, S., Cappart, Q., Limbrèe, C., Pecheur, C. & Schaus, P., Verification of railway

interlocking systems. 4th International Workshop on Engineering Safety and Security
Systems, ESSS, pp. 19–31, 2015.

190 Computers in Railways XVI

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press

