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ABSTRACT 
The Smartlock 400 (SML400) SSI-based interlocking product is one of a family of Alstom’s railway 
interlocking products which was developed as a replacement for the Solid State Interlocking (SSI) 
product. A software tool has been introduced in the SML400 application engineering process to validate 
the application data against safety conditions, or rather to prove that the application data does not violate 
specified constraint violations. The aims when designing the tool were to: develop customized software 
based on a model of the application data generated by existing tools (rather than use a generic theorem 
prover, to avoid having to translate the data into another notation); use a dynamic technique similar to 
symbolic execution (as the nature of the data renders it difficult to use static model checking 
techniques); and employ application specific rules to make the technique manageable (i.e. to reduce the 
search space of proofs). The tool has demonstrated good performance on average sized and large 
interlocking applications. By customer request, it has been used principally to validate points free-to-
move (PFM) conditions; it has found known data errors caused by points being commanded without 
having been tested free to move, imprecise definitions of PFM conditions and incomplete PFM tests 
across interlocking boundaries. The paper begins with the motivation behind the tool’s introduction. It 
describes the context of the tool, including the characteristics of the application data, the way in which 
constraint violations are expressed and the operations performed by the tool. It contains descriptions of 
sample rules used by the tool to optimise the proofs. It compares the tool with other tools that have been 
used to verify safety properties of SSI-based data. The paper ends by proposing further work for the 
enhancement and use of the tool. 
Keywords:  railway interlocking systems, SSI, safety-critical systems, model-based reasoning, formal 
methods, VDM++. 

1  INTRODUCTION 
Solid State Interlocking (SSI) is the first generation processor-based interlocking developed 
in the 1980s by the research division of the UK’s railway authority (British Rail at the time), 
GEC-General Signal and Westinghouse Signals Ltd. There is a large base of SSI installations 
in the UK. SSI has also been installed in Belgium, France, Australia, South Africa, Hong 
Kong and Indonesia. In the last 20 years, Alstom (which took over GEC-General Signal) and 
WRSL (formally Westinghouse Signals Ltd) have released next generation products 
(respectively Smartlock and Westlock) based on SSI – in particular, both products have 
adopted the language used to prepare the data for SSI applications. 
     Conventionally the process for the verification and validation of SSI-based applications 
involves: 

 the independent manual checking of the application data; 
 the automatic verification of the compiled data using diversity; 
 the automatic set-to-work and independent principle testing of the data by simulation on 

the interlocking and/or office PCs with software that simulates the interlocking. 

     Weaknesses with this process are: 

 manual checking is prone to human error; 
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 the verification of the compiled application data only performs checks to ensure that 
application data meets run-time operational constraints of the interlocking – it does not 
ensure that certain logical conditions, and in particular safety conditions, are satisfied; 

 the setting up and running of tests by simulation are time consuming, and it is near on 
impossible to create test scenarios that would take into account every possible exception 
circumstance that could lead to a violation of a safety condition. 

     These weaknesses have led to situations where SSI-based interlocking failures have 
occurred on site resulting in unsafe states of the railway. These incidents have caused such 
concern that railway authorities were beginning to turn away from SSI-based products. In the 
UK, this resulted in Network Rail demanding more stringent safety process requirements on 
the development of new SSI-based interlocking applications, obliging its data suppliers to 
employ automatic tools to check for errors, specifically those related to the incorrect 
specification of points free-to-move (PFM) conditions which were the root cause of all 
incidents reported, and to actively engage both the railway industry and academia in the 
search for a solution to check the safety of commissioned and installed SSI-based 
interlockings. Most of the proposed solutions failed to convince Network Rail – some 
because they concentrated on automatic testing methods that did not guarantee the expected 
level of data coverage; others because they relied on the employment of general purpose 
theorem proving tools that require the translation of the SSI data into another notation suitable 
for static model checking and specialist skills to run them and which were judged to be of 
limited practical use for large scale interlocking applications. The solution presented by 
Alstom was the use of a bespoke software tool that proves the absence of violations of safety 
conditions, expressed simply in an SSI-like notation, using a dynamic proof technique and 
application specific heuristics on a software model already generated automatically from SSI 
data by pre-existing SML400 tools. A demonstration of this tool (integrated in the SML400 
SSI-based application engineering process and toolset), showing its capability of finding 
known PFM related data errors (e.g. points being commanded without having been tested 
free to move, imprecise definitions of PFM conditions and incomplete PFM tests across 
interlocking boundaries), as well as its ability to check for the absence of PFM related errors 
in complex data, not only provided Network Rail with the confidence to continue considering 
Alstom as an approved supplier for future projects using the SML400 product, but it raised 
sufficient interest that Network Rail has since contracted Alstom to use the tool on the data 
of existing SML400 and SSI interlocking installations. 

2  SML400 APPLICATION DATA 
A SML400 interlocking application contains one or more central interlockings (CIXLs). 
Each CIXL consists of hardware, software and communication links with other CIXLs and 
other systems, such as train control systems and systems connected to trackside equipment. 
SML400 application data is code that represents interlocking logic, i.e. an implementation of 
the signalling requirements that a CIXL must satisfy. 
     The interlocking logic is applied on zones of the signalling area that the CIXL controls. 
In other words, the application data is created from code related to one or more virtual 
interlockings (referred to as VIXLs). The logic for each VIXL of a CIXL is defined using a 
procedural, object-centred language, which has been designed to be backwards compatible 
with the language used for configuring SSI applications, where the data for one VIXL 
corresponds to the data for one SSI central interlocking. 
    The logic is organized into blocks of code containing tests and commands that access the 
signalling object memories, which are combined together in conditions and statements, using 

180  Computers in Railways XVI

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 181, © 2019 WIT Press



typical imperative language constructs. There are different types of blocks of code, which are 
processed in different ways, as described in Table 1. 
     The application data is interpreted on the contents of reserved areas of memories used to 
record the states of the signalling functions that the CIXL controls. Iterating in cycles, the 
CIXL receives indications of the current states of the signalling functions, updates the 
memories accordingly as the logic demands, sends commands to control the signalling 
functions to their new states, and processes requests from signallers via train control systems 
(TCSs) or requests made within the application data blocks. Fig. 1 depicts the dynamic state 
of the CIXL on which the application data is processed. The CIXL state comprises data 
structures of different types. An image of the CIXL state represents the current values of the 
state variables. 
     The CIXL application data is prepared as source code. The source code syntax of the 
memory tests and commands uses mnemonics oriented to signalling engineers. The syntax 
also contains macros that encapsulate complex sequences of instructions. The source code is 
divided in the files listed in Table 2, where there is one set of files for each VIXL of the  
 

Table 1:  SML400 application data block types. 

Block type Description 

SEQ 
Contains code (in OPT, IPT and FOP blocks) executed in 
a sequential manner every processing cycle of the CIXL 

PRR 
Contains code performed on a request emanating from a 
train control system or from within the application data 

PFM normal 
PFM reverse 

Evaluated whenever other blocks need to test conditions 
for points being free to be moved normal or reverse 

MAP 
Evaluated whenever other blocks need to test certain 
route related conditions 

Evaluation 
Execution 

Evaluated/executed when called from other blocks 
(similar to subroutines) 

 

 

Figure 1:  CIXL state. 
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Table 2:  VIXL application data source files. 

File Description 

OPT Prepares operating information for transmission to TFMs and other CIXLs 

IPT Directs proving information to update CIXL memory 

FOP Specifies processing of flags, such as subroute and suboverlap releasing 

PRR Includes availability tests and commands to set and lock routes and move points 

PFM Defines for each set of points conditions for them to move normal and reverse  

MAP Used to search for trains in relation to given route setting and release conditions 

 
 
CIXL. As indicated by their names, each file is used to define blocks of specific types. The 
source code makes reference to the addresses of telegrams, used for the exchange of external 
messages with trackside function modules (TFMs) and internal messages between VIXL or 
between the CIXL and other CIXLs (or other external systems), and to the ids of various 
signalling functions managed by the SML400T application. The source files are processed 
together with internal and external communications data files, which list the telegram 
addresses, and identity files, which list, for each VIXL of the CIXL, the ids of signalling 
functions by type. 
     Fig. 2 contains example source code (with comments) for a PRR block (in the PRR file) 
used to satisfy a request from a TCS to set a route. After undergoing a series of checks and 
translations (including the expansion of macros intro primitive data constructs), the source 
code is compiled to Motorola S3 object code, which is programmed on a memory device to 
be installed on the CIXL. Following the design of SSI, the object code instructions are 
derived directly from the source code syntax, as shown by the listing in Fig. 3. 
     Because Alstom has no access to definitive reference material on the SSI language, and 
because the SML400 application data language was to be extended to exploit features 
provided by the SML400 product, a decision was made to formally specify the new language, 
in order to understand its semantics, i.e. what requirements it must satisfy to conform to the 
on-line processing requirements of the CIXL (exported CIXL application data constraints) 
and how it is interpreted by the CIXL, and, as a consequence, clarify its syntax [1]. The 
formal specification, written using the VDM++ notation, defines, in an object-oriented 
manner, the essential entities, properties and relations of the code elements processed by the 
interlocking interpreter. The formal specification uses an abstract syntax to describe the 
interlocking logic, in a language that is independent from both the source code and object 
code notations. An example of the syntax is contained in Fig. 4, which contains (commented) 
code equivalent to that expressed in Fig. 2 and Fig. 3. 
     The intermediate code serves as an API to construct objects representing the application 
data (in its primitive form after source code to source code translation). This object-oriented 
representation renders it easier to design tools to reason about, manipulate and process the 
CIXL application data. Fig. 5 illustrates how the intermediate code, and the object model 
created from it, is used to verify and validate CIXL application data.. 
     The top of Fig. 5 shows the activities used as part of a diversified process to compile and 
verify the CIXL application data. The intermediate code is used in the process as a means of 
verifying that the application data object code is consistent with the source code from which  
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Figure 2:  PRR block in source code syntax. 

 

Figure 3:  PRR block in object code syntax. 

 

Figure 4:  PRR block in intermediate code syntax. 

*VMANUP.QR5(M) 
 if VMANUP.R5(M) a    / if route 5(M) available and 
  VMANUP.P2 cnf          / points 2 controlled or free to move normal 
 then VMANUP.R5(M) s   / then set route 5(M); 
  VMANUP.P2 cn              / set points 2 controlled normal; 
  VMANUP.S5 clear bpull     / clear signal 5 button pulled 
 \ 
\ 

memory map: 
VMANUP.S5         5 
VMANUP.P2         2 
VMANUP.R5(M)       9 
block map: 
VMANUP.QR5(M)     14780 
instructions: 
[N°14780 : 0x0001 14787 14787 => if ] 
[N°14781 : 0x0621 9  0    => VMANUP.R5(M) a ] 
[N°14782 : 0x0541 2  1    => VMANUP.P2 cnf ] 
[N°14783 : 0x0002 0  0    => then ] 
[N°14784 : 0x0620 9  0    => VMANUP.R5(M) s ] 
[N°14785 : 0x0541 2  0    => VMANUP.P2 cn ] 
[N°14786 : 0x040A 5  0    => VMANUP.S5 clear bpull ] 
[N°14787 : 0x0008 0  0    => \ ] 
[N°14788 : 0x0008 0  0    => \ ]

data.definePRRBlock( 
 "VMANUP.QR5(M)",   -- block label 
 data.statementList([ -- block statements 
  data.conditionalStatementList(   
   data.conditionList([  -- conditions to evaluate 
   data.routeAvailableTest("VMANUP.R5(M)"), 
   data.pointsNormalStateTest(  -- Check, 
    "VMANUP.P2",                -- in points memory, 
    mk_(                        -- if either 
     {                          -- all data bits, comprising 
     mk_token(<controlN>)},     -- controlN data bit, 
     1),                        -- are set to 1, or 
    true)]),                    -- points free to move. 
   data.statementList([ -- 'then' statements to execute 
   data.setRouteCommand("R5(M)"), -- Set route memory data bit. 
   data.pointsNormalStateCommand( -- Assign, 
    "VMANUP.P2",                  -- in points memory, 
    {                             -- all data bits, comprising 
    mk_token(<controlN>)},        -- controlN data bit, 
    1),                           -- to 1. 
   data.signalStateCommand(       -- Assign, 
    "VMANUP.S5",                  -- in signal memory, 
    {                             -- all data bits, comprising 
    mk_token(<bpull>)},           -- bpull data bit, 
    0)]),                         -- to 0.  
   nil)]));                       -- no 'else' statements to execute 
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Figure 5:  Application data verification and validation. 

it was compiled, by comparing files containing intermediate code generated independently 
from the source code and the object code, and to perform a static analysis of the application 
data, as an independent verification to the checks performed on the source code, to verify that 
the application data meets the exported constraints. Diverse means were used to develop tools 
to automate the process as described in [1]. The VDM++ specification of the SML400 
application data language was used as the software design of a tool that analyses the 
intermediate code (the design was translated in Common Lisp using VDM++ to Common 
Lisp implementation rules and delivered as an application using LispWorks). This tool uses 
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the instructions in the intermediate code to build the application data objects, ensuring that 
the objects satisfy the invariants defined in the specification, checks that the objects satisfy 
other conditions defined in the specification, and saves the objects to a file read by other tools 
that support the validation activities at the bottom of Fig. 5 (also implemented with 
LispWorks using the same specification to design approach). One of these tools is used to 
validate the application data of one or more VIXLs/CIXLs against logical requirements, 
including safety constraints, by executing the application data models according to the 
sections of the VDM++ specification that define how the CIXL interprets the SML400 
language, in a test environment which simulates the interfaces between the CIXL and other 
subsystems of the interlocking. As stated in the introduction, because test scenarios cannot 
cover every possible circumstance that could lead to an unsafe state, another tool is used to 
validate the application data by proving that there is no execution path in the object model 
that would result in a CIXL state that constitutes a violation of a safety constraint. Starting 
from an initial state, this latter tool performs an exhaustive search on parts of the object model 
that could lead to an unsafe state, by executing those parts on that state, and all new safe 
states that result from the execution, until an unsafe state is reached or all states have been 
searched. 

3  CONSTRAINT VIOLATIONS 
Constraint violations are defined in text files using SML400-like syntax. Like the CIXL 
application data, constraint violations are contained in blocks. Each constraint violation  
file contains one or more violation blocks. An example of a violation block is contained in 
Fig. 6. 
     As seen in the figure, each violation block has a block label and contains one or more 
constraint violations. The block label of each violation block in the constraint violation file 
must be unique. Each constraint violation contains a list of conditions that define an unsafe 
CIXL state (i.e. a CIXL state resulting from some execution path of the CIXL application  
 

 

Figure 6:  Violation block. 
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data which is deemed unsafe) and an optional list of conditions that define a precondition on 
the CIXL state prior to the unsafe state (i.e. the conditions that the CIXL state must satisfy in 
order to run an execution path of the CIXL application data). The conditions and optional 
precondition of a constraint violation are expressed in terms of tests on the contents of the 
CIXL memories associated with signalling functions declared in the identity files from which 
the CIXL application is created (recall Fig. 1). The memory tests access data of the memories 
of various types that represent different attributes of the signalling function objects. 
     To explain better, the following two clauses, expressed in natural language, paraphrase 
the two constraint violations defined in Fig. 6. 
     The state of the CIXL is unsafe whenever the points “201” of VIXL “OLDDALBY” are 
positioned normal and at least one of the track sections “EB” and “EA” of the VIXL becomes 
occupied, in the case when the points are not lying normal and/or at least one of the track 
sections is already occupied. 
     The state of the CIXL is unsafe whenever the points “201” of VIXL “OLDDALBY” are 
positioned normal and at least one of the subroutes “EA-BC” and “EB-CA” of the VIXL is 
locked, in the case when the points are not lying normal. 
     In the second constraint violation, the expressions “VOLDDALBY.UEA-BC l” and 
“VOLDDALBY.UEB-CA l” denote that two flags are set false, where each flag represents the 
state of a subroute (a part of route over a given track section in a certain direction – if the 
subroute is locked, the corresponding flag is false; if the subroute is free, the corresponding 
flag is true). In the SML400 application data syntax, each object id is prefixed with a VIXL 
name tag, which is composed of the upper case letter “V”, the name of the VIXL that contains 
it and the full stop character “.”, and an upper case letter that signifies the type of object. 
     Each constraint violation has a type, derived from the label of the violation block in which 
it is contained, which is taken into account by the rules used by the validation tool. At the 
time of writing, the tool has only been used to search for PFM related violations, such as the 
ones defined in Fig. 6, and related subroute/suboverlap release and route release violations, 
which define unsafe states related to the releasing of locked subroutes/suboverlaps once trains 
pass over them and the cancelling of routes, because past experience has shown that these 
types of violation are most likely to occur, however the tool has been designed in a general 
way to run proofs on other types of violations. Different types of violations are expressed in 
standard ways following generic or customer specific guidelines. 
     The validation tool translates constraint violation files into an intermediate code format, 
similar to that used for the CIXL application data. The intermediate code format comprises 
an API for creating objects representing the violation blocks and the constraint violations 
contained in them. The tool loads the intermediate code, creates the objects, ensuring that 
they comply to specified invariants (e.g. the violation block labels are distinct, and the 
constraint violations refer to signalling functions declared for the CIXL application data) and 
reasons about them as it performs the proofs. 

4  APPLICATION DATA VALIDATION 
Fig. 7 shows the main operations that the validation tool performs to run a proof. 
     The purpose of the first operation is to reduce the search space by masking out data that 
is not relevant to the violation under proof. During this operation the tool performs a kind of 
two phase “look-back” through the application data, starting with primary commands in the 
data that could lead directly to the violation. The tool applies generic rules about logic, rules 
specific to signalling and SML400 application data and rules related to the violation’s type 
(examples of which are described in Section 4.1), to prevent unreachable states being  
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Figure 7:  SML400 application data validation tool operations. 

searched and false unsafe states being detected. The purpose of the second operation is to 
start the search on a CIXL state that is most likely to lead to an unsafe state as quickly as 
possible, by presetting the state’s variables to appropriate values deduced by the masking 
operation. As an example, for PFM related violations, the tool presets flags representing 
subroutes/suboverlaps (i.e. sets them as free) and therefore, in the first instance, it does not 
look back on commands that set them. This is a valid start state since, in its start-up 
operations, the CIXL application data should wait a specified time, to ensure that all trains 
have halted before processing requests, during which time subroutes/suboverlaps will 
become free if tracks are unoccupied, and it is assumed that the start-up operations and route 
release conditions are validated by running the tool on related violations or by some other 
means. The tool does however mask in secondary commands that set preset flags if they are 
in the same statements as the primary commands in the case when they could override or 
enable the primary commands. 
     The tool performs the search in the third operation as described previously. For 
performance reasons, the tool partitions the masked application data, and corresponding parts 
of the state that the masked application data accesses, in execution contexts that it searches 
separately. Each execution context contains a PRR block that commands parts of the state 
that could lead to the constraint violation, or a SEQ block that directly commands data values 
referred to in the constraint violation, together with all mutually dependent SEQ blocks with 
statements that command parts of the state that the PRR/SEQ block tests. During the search 
operation the tool simulates the CIXL execution cycles by rerunning the contexts on each 
relevant safe state reached. 
     The tool executes the blocks in the contexts according to the VDM++ specification. Since 
the tool is meant to validate the application data that the CIXL interprets rather than the other 
functions of the CIXL, including the functions that interact with TCSs and the trackside 
communication systems, there are some deviations from the specification, for example in the 
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management of request queues, external messages and elapsed timers. The tool considers that 
all requests coming from a TCS are in the queue for the relevant VIXL (whereas it expects 
internal requests to be queued by commands in the masked application data) and, since it 
runs the execution contexts separately, it does not need to maintain an ordering of the requests 
in the queues. The tool does not look back on input message tests, which means that whenever 
they appear in conditions, it evaluates them as uncertain, since it has no way of determining 
the contents of the messages, which causes the tool to swing in both senses of the conditional 
statement lists in which the messages appear. To manage this uncertainty, the tool uses fuzzy 
evaluation and efficient branching algorithms to ensure that all paths in execution contexts 
are taken as and when needed, thereby forcing itself to search on all relevant images of the 
CIXL state. The tool operates on ranges of timer values converted from specific values in 
elapsed timer tests and commands. 
     The tool may run proofs on one or more violations. As it performs its operations, it prints 
information about each proof to a listing, which contains details of how it performs the mask 
operation, a description of the proof, including the constraint violation under proof and the 
execution contexts created for the proof. For each unsafe state reached from a given start 
state, it prints to the listing a description of the start state, the execution path that led to the 
unsafe state, and a description of the unsafe state. If no unsafe state is reached, or if the option 
is set to continue searching after an unsafe state is reached, on completion of the proof, it 
prints to the listing the results of the proof, including the number of safe states reached and 
searched in the execution contexts. The tool has an option to save an image of the state prior 
to the unsafe state which can be loaded by the tool that executes the application data (see Fig. 
5) to examine the circumstances leading to it. The tool is capable of recovering a proof that 
has been interrupted for some reason. The tool enables users to overwrite the default masking 
rules, via a dialog that allows changes to the resulting selection of preset and redundant flags 
and PRR/SEQ blocks masked in and out of the data. 

4.1  Masking rules 

The tool uses generic rules about logic to simplify masked in lists of conditional statements, 
e.g. to eliminate redundant branches containing commands that would never be reached, and 
to deduce redundant flags, i.e. flags that are only tested in conditional statement lists with 
only one branch. 
     The states of track sections are normally set according to the contents of input messages, 
i.e. via commands in conditional statement lists that test input messages. Because the tool 
swings on these tests as indicated above, these commands serve to generate all permutations 
of track section states that the program needs to search on. To reduce the amount of swinging, 
the tool imitates a practice that was necessary in early SSI applications for performance 
reasons, which is to split the processing requirements for a request into separate PRR blocks 
that are processed in successive execution cycles, where the split PRR blocks are chained 
together via internal requests. The tool uses the same technique to split requests on artificial 
internal requests to divide the workload during the search operation. Assuming that PRR 
blocks test but not command track section state values, the tool moves statements of a PRR 
block that test distinct track section state values into virtual PRR blocks, replacing the 
statements with commands to set the artificial requests. 
     From the tool’s perspective an elapsed timer can be in any state at the start of during any 
execution path that it takes, so one might think that the tool should evaluate timer tests as 
uncertain. However, to avoid swinging on these tests, the tool makes a judgement on timer 
values based on an analysis of their ranges, considering that each timer value may be set to 
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one of three state values: 0 (for started), 1 (for set) and 2 (for stopped). The tool presets the 
timer values to started or stopped depending on how the timers are used in the data (for 
example, it assumes that elapsed timers used for managing requests over cross boundaries 
are reset to stopped at the start of each execution cycle, otherwise an error would occur). 
     The tool applies masking rules that are specific to applications for Network Rail to 
simplify data related to track sections. One rule is applied to tests and commands that prevent 
the misdetection of track section states due to bobbing conditions. The other rule (applied 
only for PFM related violations) is for track sections that are duplicated across VIXL 
boundaries. Both rules rely on naming conventions used for the track section ids. 

5  COMPARISON WITH RELATED WORK 
[2] and [3] present studies of the use of the general purpose NuSMV model checking software 
to verify SSI data, whereby the data is translated automatically as a model in the SMV format 
and the model is checked against specified safety properties. Only a subset of the data is 
included in the model – the rest of the data is not considered safety related or is abstracted in 
the model, and the model checking is done only on a single SSI application. [2] reports 
difficulties in optimizing the software to provide acceptable performance without the need to 
access its internal representations and concludes that a purpose-build SSI data checker, 
integrated with a parser of the SSI data, would be more efficient and usable. [3] reports that 
is possible to gain better performance via customization of the software’s algorithms. Both 
[2] and [3] suggest that the approach would be improved if the underlying model 
representation was hidden and the safety properties were automatically generated from track 
layouts. 
     In contrast the SML400 application data validation tool was developed as custom-made 
software that operates on a model that resembles the target data that is interpreted by the 
CIXL. All of the target data are represented in the model, taking into account that the misuse 
of apparently non-safety related data could lead to an unsafe state. The tool addresses 
performance issues by splitting the application data into manageable partitions and using 
bespoke algorithms to search them efficiently, together with the use of domain-specific 
heuristics (knowledge about signalling applications in general and SSI-based applications in 
particular) that are derivable automatically from the types of constraint violations. These 
techniques serve to limit the search space for each proof, thus making it feasible to use on 
complex data. 
     To give an indication of the speed of the validation tool, on a microprocessor that runs at 
2.67 GHz, it takes a few minutes to prove the absence of constraint violations for the 
movement, in both directions, of all sets of points in an interlocking area of medium 
complexity using violation blocks akin to those in Fig. 6. For a single set of points on a track 
section that allows multiple movements across interlocking boundaries, a proof takes several 
days (although the time can be reduced significantly by splitting the conditions involving the 
track sections and the subroutes into separate violation blocks). Even so, the performance is 
favorable when compared to the time it takes to run similar test scenarios. 
     The validation tool may be run on the application data of single VIXLs or on data related 
to multiple VIXLs of the same CIXL or different CIXLs, thus enabling safety requirements 
of data related to communicating interlockings to be checked. The validation can be 
performed in phases, by running separate proofs to validate safety requirements related to 
different signalling functions of different VIXLs, to enable the validation activity to be 
performed in parallel. 
     The key competence required to use the tool is a basic fluency in signalling to be able to 
deduce, from scheme plans, unsafe conditions and to formulate them as constraint violations 
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in the required syntax. Although it would be possible to generate the constraint violations 
automatically, it is intended that the safety properties of the CIXL application data be checked 
by an independent validator, i.e. the same person who is responsible for ensuring that the 
right properties are validated, and hence the user of the tool would need to control the contents 
of the violation blocks in any case. The validation tool is integrated in a user-friendly software 
system that automates the generation and flow of files between the tools used for the 
interlocking configuration activities, including those shown in Fig. 2, in a way that is 
transparent to the user, so limited informatics skills are required to run the tool. 

6  FUTURE WORK 
Until now, the tool has been applied only to UK SSI-based applications and, following the 
specific requirements from Network Rail, it has only been used to validate PFM related safety 
conditions. The tool has been tried on other kinds of safety conditions, but mainly as a means 
to test the genericity of its design, so the next challenge is to employ the tool on a wider set 
of example data and conditions, using appropriate masking rules oriented to the signalling 
principles of other countries where SSI-based interlockings are installed, building up a set of 
templates to express the constraint violations in standard ways as was done with the PFM 
related violations. Due to the urgency of delivering the tool for the UK market, the Network 
Rail specific masking rules have been hard-coded in the tool’s software, however it would 
be straightforward to enable the tool to import rules that are specific to given signalling 
authorities from configuration files. 
     Given that the language used to prepare SML400 application data is an extension to the 
SSI language, the SML400 tools can be used on legacy SSI data without the need to rewrite 
it. Because the data language for Westlock is not strictly backward compatible with SSI, it 
would be interesting to see how much effort would be necessary to enable the SML400 tools 
to import Westlock data to allow it to be checked with the SML400 data validator tool. 
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