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Abstract

The influence of a great number of parameters on tool wear in hot die forging of
steel is very complex, and thus the relations between these parameters and the
wear are highly non-linear and spatially very disordered. Even small variations
(though within allowed limits) of the chemical composition of the tool material,
in heat treatment conditions, etc. can cause considerable scattering of data on tool
wear resistance. Therefore wear can be hardly described mathematically either by
phenomenological models or by common regression equations. A better solution
in predicting tool wear (the arbor radius) is given by applying a hybrid model,
that as presented here. A CAE neural network was used to design a model which
enables the phenomenon of tool wear to be described and which is based on data
from the FEM analysis of forging, the time variation of wear contours of true
tools, coded expert know-how, data on tool materials, etc. Application of a hybrid
model is illustrated in some cases of practical relevance. The results predicted by
CAE neural network approach show good agreement with the measured ones.
The efficiency of this approach is better with a bigger data base when CAE
neural network in the mathematical sense only executes interpolations between
the data in the problem space.

1 Introduction

The tools in hot metal forging are cyclically exposed to high mechanical, thermal,
tribological and chemical loads. Wear itself in more than 71 % of all cases
represents the main cause for discarding the tool (the wear exceeds the allowed
tolerance), while mechanical fatigue of tool materials in 25%, thermal fatigue in
3% and plastic deformation in 1% of cases are the other causes. The most
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exposed parts of the tool are the engravings with a small radius of curvature (tool
arbor radius); where the highest contact pressures and sliding lengths occur. Due
to the complexity of the problem, predicting tool wear even today presents a great
challenge. Better wear prediction would also mean lower production costs, since
unexpected tool breakdowns (failures) can increase costs by up to 30% per
forging unit [1-5].

The possibility of better tool wear prediction is offered by a combination of CAE
NN (Conditional Average Estimator Neural Networks) as an improvement on
classical statistics and FEM analysis of the hot forging process, the accuracy of
which is being continually improved [6]. Namely, most forges have extensive
data bases on tool wear obtained during years of forging with tools made of
various tool steels, various forging shapes, the use of different lubricants, etc. All
these data cannot be used efficiently with current rigid mathematical tools, i.e. to
predict the wear of other tools on the basis of known data on tool wear. In this
paper a new approach is suggested in order to achieve a better use of data already
existing in by means of the artificial intelligence (CAE NN) approach, data
obtained by FEM analysis, expert knowledge, etc.

2 Influential parameters and models of wear prediction

The parameters most influencing on tool wear (Fig. 1) are surface hardness and
toughness at elevated temperature (carbide-forming elements), workpiece
deformation (contact surface traction), contact pressures, sliding lengths, relative
velocity of slippage, contact time, workpiece temperature, basic tool temperature,
presence of the third particles in the interface (scale), lubrication, etc. [2-5]. Their
influence on wear are very complex and the relationship between wear and these
parameters are is highly non-linear and spatially very disordered. When testing
wear on block on ring testing equipment in the laboratory, Zhang at al [7], for
example, found that wear is drastically increased at specific combinations of
contact pressures and relative velocity of slippage. These kinds of changes can
hardly be described by functions of the exponential type. The most often used
wear model is Archard’s model, which was upgraded by a number of authors by
including new parameters (scale, lubricant, etc.) [8-12]. Doege et al [3-4]
suggested a new equation for tool wear prediction on the arbor radius (at the point
of maximum wear) on the basis of extensive data on tool wear. The equation put
forward considered eight sets of parameters (their exponents were obtained by a
statistical method).

Attempts were made to solve the problem of the complexity of tool wear by using
expert systems on the one hand [13], and numerical simulations and neural
networks on the other [14]. In recent years mathematical micromechanical
models can be found in the literature [15-16] for simulating friction and wear.
These models, however, are still of a more theoretical character, friction (metal
forming) still being the subject of various research projects [17-18]. Behrens et al
[19] described the friction conditions by means of an adaptive friction coefficient
which was predicted by BP NN (Back Propagation Neural Networks) on the basis
of data obtained by the FEM analysis of the compression process. Some other
authors [12] also stress the importance of changeable influential parameters
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(contact pressure, sliding lengths, etc.) along the sliding deformed material on the
tool curvature (arbor radius). Consequently, non-uniform wear and deposition of
materials can occur, especially on small tool radii [4-5]. In such cases, primarily,
the above-mentioned models are not always reliable in predicting wear on the
entire arbor radius. Neural networks have been efficiently applied for wear
prediction on cutting tools [20-21] and on samples in laboratory wear testing [22-
23], and there have also been some attempts to apply neural networks to forming
tools [24-25].
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Figure 1: Influential parameters of tool wear, [3].
3 Basic characteristics of the new approach to wear prediction

Having great amounts of data on wear and influential parameters at our disposal,
it is important to apply such a method that enables: us to take into account (1) the
majority of essential parameters and (2) their interdependence. The CAE NN
approach is one of the possible methods for doing this. The basis of the new
approach (CAE and FEM) for wear prediction has already been presented [25]. A
detailed description of CAE NN can be found in [26-29); hence in this paper only
the basic principles are given. Note, however, that CAE NN is not a typical
neural network.

In general approach of CAE NN, each of the output variables corresponding to

the vector under consideration X (i.e. a vector with known input variables p; and
output variables 7, to be predicted)

X =(P1r'-,Pi,---,PL,IAir--,f'k,---)T M
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can be estimated by the formula

N
f=>C, I, Q)
n=1

where
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Here fk is the k-th output variable to be predicted (corresponding to the vector

X ; in our case tool wear), r,; is the same output variable corresponding to the »-
th vector in the data base, py, is the i-th input variable of X, (parameters that

influence tool wear), p; is the i-th input variable of X, N is the number of model
vectors in the data base, w is smoothness parameter, and L is the number of input
variables.

In general the relevant processes regarding wear can be investigated at several
levels, i.e. the nano, micro and macro level, as well as at the external (visible)
level. The higher the level used to obtain data about the relevant processes the
more difficult it seems to be to follow them quantitatively during the wear
process. These problems still occur at the micro level, whereas FEM analysis, the
precision of which has advanced greatly in the recent years, can bring more
reliable data at the macro level. Here, the temperature calculated on the surface
layer of the tool is still an exception, which is the reason why only the measured
temperature of the workpiece is taken into consideration. The data basis is thus
formed by following the essential parameters (mechanical and thermal loads) at
the macro level (the FEM analysis), which indirectly affect the processes at other
levels. For each point determined on the observed tool curvature (arbor radius,
Fig. 2) the temporal course of the influential parameters must be calculated. This
includes normal and tangential pressures, sliding velocity, sliding length, the
temperature on the tool surface, their relative values along the contour in the
direction of sliding, etc. The temporal course of sliding lengths on the mentioned
arbor radius computed in this way (FEM) is shown on Fig. 3. It can be clearly
seen that sliding lengths increase in the first part of the arbor radius and rapidiy
decrease in the second part, which means that there is a low value of relative
sliding between the tool and the deformed material. The FEM analysis of contact
pressures also indicates that in the first part relatively high pressures occur,
whereas they decrease in the second part. Both cases explain why, on the one



éﬁj Transactions on Engineering Sciences vol 38, © 2003 WIT Press, www.witpress.com, ISSN 1743-3533

Computational Methods in Contact Mechanics VI 193

hand, the removal (wear) of material occurs in the first part of the arbor radius
and, on the other hand, why deposition of material can be noticed on the second
part (Fig. 4). The data base is furthermore formed by the physical properties of
the tool materials (chemical composition, hardness, tensile strength, etc.), the
expert knowledge, as well as wears data on the entire arbor radius at a various
number of strokes. In the Table 1 all the applied influential parameters are given
except for parameters describing the chemical composition, which are given in
the Table 2.

The scattering of tool wear data can be caused by variation of chemical
composition (above all of the carbide-forming elements) of tools, though still
within the allowed limits, by heat treatment of tool steels (a different temperature
of austenitising and of tempering, etc.), by varying composition of the lubricant,
and so on. Small variations in the chemical composition cannot simply be
expressed in terms of other hardness data (tensile strength, etc.), but additionally
by forming eight new vectors (parameters) for chemical composition. The
number of parameters in such models can vary from 15 to 62, depending on the
type of model.

curvature
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Forged
piece

Figure 2: Applied tool with arbor radius and origin of coord. system defined, [5].
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Figure 3: Temporal course of sliding lengths on the arbor radius.
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Table 1: Variables - components of model vectors for description of wear.
ONgi) Normal pressure at time 7 and on point i
Loy Sliding length at time ¢ and on point i
Vi) Relative velocity of slip at time t and on point {
N, Number of strokes
W ins,i) Wear at Ns on point i
ONmax/ ONG) Ratio of max. pressure on the whole die curvature
to max. pressure on point i
S/ — Ratio of max. sliding length on the whole die
curvature to max. sliding length on point i
Voar/ Vmas (i) Ratio of max. sliding velocity on the whole die
curvature to max. sliding velocity on point i
Lot Sum of products of normal pressure and time
v Temperature of forgings
i Position of point on the curvature
t Time
o, Tensile strength
Vau Austenitising temperature
v Tempering temperature
Table 2: Allowed deviations (%) of chemical composition of tool steels used.
C Si Mn Cr | Mo \ Ni Co Ti
W.Nr. 0.37 0.90 0.30 4.80 1.20 0.90 - - -
12344 043 120 } 050 | 550 1.50 1.10 - - -
W.Nr. 028 0.10 0.15 270 | 2.60 0.40 - - -
1.2365 0.35 0.40 0.45 3.20 3.00 0.700 - - -
W.NI. 0.50 0.10 | 065 100 | 045 0.07 1.50 - -
12714 .60 0.40 (.95 120 | 0.55 0.12 1.80 - -
W.Nr. 0.01 - - - 7.80 - 11.80 7.85 0.45
1.2799 0.05 - - - 8.30 - 12.20 8.25 0.55

4 Results of wear prediction by CAE NN

In the case of a small data base a reasonable method seems to be taking the wear
data at a lower number of strokes. These data already indicate the direction of
scattering of end wear data (above or below the average). This method of
intermediate control of tool wear is regularly used in forges; usually, just the data
on the point of maximum wear suffices. The accordance between the measured
and CAE predicted wear values are estimated by the coefficient of determination

(B):
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I, in equation 5 represents the mean value of r,, and M is the number of model
vectors tested.

4.1 Prediction of tool wear for other chemical compositions

In order to be able to predict wear by CAE NN a minimal data base had to be
constructed. It was formed by means of FEM analysis of the forging process
(temporal course of parameters), as well as by data characterizing the material
properties (tensile strength, chemical composition, etc.). The base also included
data on the wear of arbor radii at a various number of strokes (100 and/or 200,
500 and 1000). The tools with tensile strength 1500 MPa were made of W.Nr.
1.2344, W.Nr. 1.2365 and W. Nr. 1.2714, having the same dimensions and
austenitised at the same temperature (1100 °C). The workpieces (heated on 1100
°C) were made of C 45, their dimensions were ®=30x40 mm, contact time 0.020
s, time of one cycle 13 s, the lubricant delta 31 (friction factor m=0.2), etc. [4-5].
The fourth tool (W.Nr. 1.2799) also had the same shape and dimensions (Fig. 2),
and knowing the intermediate data on tool wear (e.g. at 500 strokes), enabled us
to predict (extrapolate) the tool wear of this fourth tool at a higher number of
strokes, e.g. at 1000 strokes. The predicted CAE wear results for the fourth tool
are shown in Fig. 4 (Example 1).

150
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Tool wear [ m]
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/
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Figure 4: Comparison between measured and CAE predicted wear at 1000
strokes, W.Nr. 1.2799; tensile strength 1500 MPa, intermediate tool
wear at 500 strokes is known, example 1.

It can be clearly seen that even a small data base (wear data for only three tools!)
enables a relatively good estimate to be made of the temporal course of wear on
the entire arbor radius (B=0.709). In Table 3 the values of B for CAE predicted
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wear values at 1000 strokes are given (Example 2-4), also for the other three tools
(procedure as in Example 1). The values for B for the given data set up (including
the last measured wear data) can also be found in Table 3.

Table 3: Values of coefficients of determination B at smoothness parameter w=2.

Example 1 | Example2 | Example3 | Example 4
W.Nr. 1.2799 1.2365 1.2344 1.2714
Given data 0.862 0.941 0.945 0.994
Extrapolation 0.709 0.567 0.862 0.959

4.2 Prediction of the wear of a tool with different mechanical properties

By using different temperature for tempering the tool material, a different tensile
strength can be achieved, which influences its wear resistance. Figure 5 shows the
measured and CAE predicted values of wear obtained by interpolation from to the
existing data base and for the case of known wear data at 500 strokes
(extrapolation). The data base originally only contained wear data on the steel
W.Nr. 1.2799, W.Nr. 1.2344, W.Nr. 1.2365 and W. Nr. 1.2714 with a tensile
strength of 1500 MPa; if then data about the wear of tool steel material with
tensile strengths of 1300 and 2000 MPa were added to the base, a CAE wear
prediction at 1000 strokes for tool steel (1400 MPa) could be carried out
(Example S, interpolation). Here a coefficient of determination B=0.697 was
obtained. If wear of a tool with a tensile strength of 1400 MPa at 1000 strokes
was predicted by known wear data at 500 strokes, the value of B obtained was
0.649 (Example 6, extrapolation). It should be noticed that the results for
Example 5 were obtained for w=0.15 and for Example 6 for w=2. The different
values applied for the smoothness parameter w were the consequence of the
largeness of the data bases and the description of the model. In Example S the
data base was relatively extensive (approximately 500 model vectors), but in
Example 6 only five model vectors were used.

150

—— Example 6
100 1| —— measured

= Example 5
50 y s
-100 S

-150

Tool wear |ym]
(=1

Pesition fmm]

Figure 5: Comparison between measured and CAE predicted wear at 1000
strokes, W.Nr 1.2365, tensile strength 1400 MPa (Example 5,
interpolation; Example 6, extrapolation, known wear at 500 strokes).



éﬁj Transactions on Engineering Sciences vol 38, © 2003 WIT Press, www.witpress.com, ISSN 1743-3533

Computational Methods in Contact Mechanics VI~ 197
4.3 Wear prediction of a tool austenitised at a different temperature

The temperature of austenitising has great influence on the dissolution of carbides
and consequently also on the wear resistance of tool steels. The Fig. 6 shows the
measured and CAE predicted values at 1000 strokes of a tool austenitised at 1050
°C. Example 7 shows the CAE predicted wear obtained by interpolation (known
wear data at 1100 °C and 1000 °C). Example 8 again shows the predicted value,
considering the known wear data at 500 strokes (extrapolation). In Example 7 the
value of B=0.657, while in Example 8 the value of B=0.924, indicating good
concordance, as is also shown in Figure 6. In this case there is also a great
accordance between the measured and predicted values.
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Figure 6: Comparison between measured and CAE predicted wear at 1000
strokes, W.Nr. 1.2365, temperature of austenitising (1050 °C);
Example 7, interpolation; Example 8, extrapolation.

4.4 Wear prediction of a tool at a different forging temperature

If the temperature of the workpiece is changed, the mechanical and thermal loads
are also changed (at lower temperature the contact pressures are increased and the
temperature on the tool surface decreases, and vice versa). As known from the
literature [2-5], lower thermal loads on the tool surface also mean lower wear
values, since the temperature is the most influential wear parameter. Mechanical
loads increase at lower workpiece temperatures.

From an existent data base on the temporal course of the influential parameters
and wear data on all the mentioned types of materials at a workpiece temperature
of 1100 °C, the wear on W.Nr. 1.2365 at a workpiece temperature of 900 °C was
predicted.

An FEM analysis was again carried out. It is worth mentioning that in this case
there were no known wear data for any of the materials in the existing data base
at lower temperature. Again, the method of input of a single wear data at 500
strokes was applied. B obtained in this case was 0.789 (Fig. 7, Example 9). By
enlarging the wear data at lower temperature, interpolation in the problem space
can be used. If the wear data are for lower temperature (900 °C) for at least one
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more of the above mentioned tool materials (W.Nr. 1.2714), then the wear data of
W.Nr. 1.2365 can be predicted more reliably (Example 10, interpolation). The
value B in this case is even higher than in the previous example where it
amounted to B = 0.864, (w=0.075).
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Figure 7: Comparison between measured and CAE predicted wear at 1000
strokes, W.Nr. 1.2365, temperature 900 °C, (Example 09,
extrapolation; Example 10, interpolation).

A similar approach was used for predicting tool wear when using other
lubricants; the results met our expectations.

The values for the coefficient of determination (B) in particular cases show that
by enlarging the data base the CAE predicted wear results improve. This can be
said for both models and also for both predicting modes (interpolation and
extrapolation). Namely, increasing the amounts of data (model vectors) fills the
vectors of problem space which, due to the complexity of the wear process, is
very extensive. Having a large enough data base, the CAE NN approach will be
only an interpolation in the problem space. In this case it can be expected with a
high degree of certainty that the description even of such a non-linear problem as
wear is going to be very precise.

5 Conclusions

The application of a hybrid model using FEM, CAE NN and coded expert
knowledge has proved to be very reliable and suitable for predicting tool wear in
forges for hot die forging, and offers an alternative to existing regression models.
With the hybrid model most of the essential parameters on tool wear are
considered, in the procedure of tool (and tool steel) making and in forging
technology these parameters can vary, thus affecting tool life.

In this paper a procedure is described for systematically enlarging the data base (a
time consuming process) and how to utilize this limited data for predicting wear.
The examples presented in this paper are adapted to the actual conditions in
forges. Though most forges possess extensive data bases, obtained in the many
years of forging programs, this data could not be used to the best effect due to the
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use of rigid mathematic tools, i.e. prediction of tool wear on the basis of known
wear data. This paper offers a new approach for better usage of such data bases.
Depending on the extensiveness of the data base, the procedures of extrapolation
and interpolation by CAE NN may be applied. Extrapolation was carried out on
the basis of known individual wear data at a lower number of strokes and this
enables reliable predictions of wear on the entire arbor radius at a higher number
of strokes. In the case of a smaller data base, the input of expert knowledge can
be of great help. A sufficient amount of data also promises an even more reliable
prediction of tool wear.
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