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Abstract

The interaction between cylinder oscillation and the shedding of vortices is investigated
numerically in this paper. The near wake structure is presented for different values of reduced
velocity of a cylinder free to oscillate transversely. One of the objectives of this paper is to
compare the numerical results with experimental data obtained by Parra [11] in the water tank
facility of IPT/University of Sdo Paulo. The attraction of applying numerical methods to this
problem is that the way the flow is modified can be studied in closer detail. In the computer it is
possible to investigate many different flow conditions more easily.

The method used for the simulation is based on the Vortex-in-Cell formulation incorporating
viscous diffusion. The Navier-Stokes equations are solved using the operator-splitting
technique, where convection and diffusion of vorticity are treated separately. The convection
part is modelled assuming that the vorticity field is carried on a large number of discrete
vortices. Force coefficients are calculated by considering the normal gradient of vorticity at the
wall to evaluate the pressure contribution and the vorticity at the wall to obtain the skin friction.

1 Introduction

Many investigations of the effect of transverse oscillations on vortex shedding
can be found in the literature. It is observed that sinusoidal transverse
oscillations are characterised by the capture of the vortex shedding frequency
by the oscillation frequency over a range of cylinder oscillation amplitudes.
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This phenomenon is called lock-in. Meneghini and Bearman [8] investigated
square, saw-tooth and parabolic wave forms of cylinder transverse oscillations,
and found that only for a parabolic wave did lock-in occur in a similar way to
that observed with sinusoidal oscillation.

With a cylinder free to oscillate, the lock-in phenomenon is
characterised by the capture of the vortex shedding frequency by the natural
frequency of the cylinder, over a range of reduced velocities. Results by Brika
and Laneville [3] and Parra [11] show that in the region of lock-in large
amplitudes of oscillation are observed for high mass parameter values, with the
mass parameter defined by equation (11). According to Blevins [2] and others,
large amplitude vibration increases the correlation of vortex shedding along the
cylinder axis. With this consideration, two-dimensional numerical simulations
should be reliable in terms of analysing flow details and wake structures in the
lock-in regime.

In this work the vortex shedding from a cylinder free to oscillate
transversely is investigated numerically. The results are compared with the
experimental data obtained by Parra [11] and Khalak and Williamson [5]. The
method used for the simulations is based on the Vortex-in-Cell formulation
incorporating viscous diffusion. The Navier-Stokes equations are solved using
the operator-splitting technique, where convection and diffusion of vorticity are
treated separately. The convection part is modelled assuming that the vorticity
is carried on a large number of discrete vortices. Force coefficients are
calculated by considering the normal gradient of vorticity at the wall to
evaluate the pressure contribution and the value of the vorticity at the wall to
evaluate the skin friction. For each time step, once the force coefficients were
calculated, the second order ordinary differential equation for the transverse
motion of the cylinder is solved through a Runge-Kutta method. The resulting
cylinder velocity is used to obtain the relative free-stream velocity for the next
time step.

2 Numerical Method

The Vortex-in-Cell formulation incorporating viscous diffusion has been
applied by Meneghini and Bearman to investigate the effect of large amplitude
of oscillation on vortex shedding from an oscillating circular cylinder [7] and to
investigate the effect of displacement wave form on vortex shedding from a
circular cylinder [8]. Arkell et al. [1] used the method to study the effects of
waves on the far wake behind a circular cylinder. This approach has been
developed by Graham [4] and details about the method can be found in
Meneghini and Bearman [6]. A thorough review of vortex methods has been
published by Sarpkaya [12].

In order to study the flow about a circular cylinder a conformal
transformation (x,y) — (£, 1) is used. The cylinder wall is specified by a line 1
= 0 in the transformed plane. The two-dimensional Navier-Stokes equations in
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vorticity () stream function () formulation in the transformed plane can be
written as:

b2 oy do v Jdw 2’0 J'w
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where v is the kinematic viscosity and J is the Jacobian of the transformation.
Equation (2) represents Poisson’s equation for the stream function in the
transform plane. Equation (1) is solved using the operator-splitting technique,
where convection and diffusion of vorticity are treated separately:
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The convection part is modelled assuming that the vorticity field w is carried
on a large number of discrete vortices. The vorticity is represented by a
distribution of discrete vortices in the form:

Ny

o(&n.1)=> T,8(E~& 1)s(n-n, (1)) (5)

k=1

where I is the circulation of the kth point vortex, and & is the Dirac function.
Poisson’s equation (2) is solved at each time step on a grid which is uniform in
the & direction so that a Fast Fourier Transform algorithm may be used. A
stretched mesh is employed in the 1) direction in order to resolve accurately the
cylinder boundary layer. For the purpose of solving Poisson’s equation,
circulation of the kth discrete vortex in a mesh cell is projected to the four
surrounding mesh points according to a bilinear area weighting scheme.
Equation (2) results in a tridiagonal set of equations for the transform of Y on
the 11 = constant grid lines, after taking a fast discrete Fourier Transform in the
¢ direction and using a central difference scheme. The solution of this
tridiagonal set of equations gives w at every mesh point (i,j) . The velocity
components at these points are then calculated by a finite difference scheme
applied to the relation between velocity and stream function.
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Boundary conditions on y are y = 0 at the body surface and the value of
Y is evaluated by Biot-Savart integration at the outer boundary of the
computational domain. The contribution of the free stream is considered
separately. The values of vorticity at the mesh points are considered for the
Biot-Savart integration rather than the circulation of each discrete vortex. This
is done in order to have a more efficient procedure in terms of computational
time.

The diffusion part of equation (1), which is given in (4), is solved by a
finite difference scheme in a semi-implicit form carried out on the same fixed
expanding mesh as used for convection. The wall vorticity is calculated in
order to satisfy the no-slip boundary condition. The solution of (4) gives the
change in vorticity due to diffusion at every mesh point. The change in vorticity
is projected back on to a point vortex in a similar manner as used by the area
weighting scheme. The convection part of the Navier-Stokes equations is
satisfied by convecting the point vortices in a Lagrangian way. The velocity
components of the kth discrete vortex are found by interpolation of the
velocities in the four mesh points surrounding this vortex.

3 Force Evaluation

Force coefficients are calculated by suitably integrating the pressure and skin
friction contributions. After considering the contributions from skin friction
and pressure, the force components are resolved in the two directions (x,y) in

the physical plane , yielding F, and F, These forces are then non-
dimensionalised as follows:

2F\, nD dzy

Cl= S+ 6
pU’D 2U? dr* ©

cd =2 D
" pUD (

where p is the fluid density, U is the free stream velocity D is the circular
cylinder diameter, and y is the position of the cylinder in the transverse
direction . The second term on the right side of equation (6) is the correction
due to the acceleration of the cylinder in the transverse direction. As our mesh
is fixed to the body, this correction must be done to take into account the inertia
effect.

4 Equations for Vortex-induced Vibration

The equation of motion for a cylinder free to oscillate in the transverse
direction is:
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where m is the mass of the cylinder per unit length, @, is the natural frequency
of the cylinder, and f is the fraction of critical viscous damping. According to
Parkinson [10], if the non-dimensional transverse displacement of the cylinder
given is by Y=y/D and the non-dimensional time is given by 7=U#D, then
equation (8) can be rewritten as:

1

Y+2BY+Y=Cpn pp= V2 9

where:

de Y and Y:ﬂ , (10)
72 dt

n, the mass parameter, is given by:

pD’

2m

(11)

and V,, the reduced velocity, is given by:

UT,
V, =
D

(12)

where T, is the natural period of the cylinder, T,=2m/w,.

Once a lift coefficient for a time step is calculated using (6), equation
(9) can be solved through a fourth order Runge-Kutta method to give the
velocity of the cylinder in the transverse direction. With the cylinder considered
fixed on the grid, this velocity is applied to the free stream for the next time
step.

5 Discussion of Results and Conclusions

In all numerical results shown in this paper, Re = 200, with the Reynolds
number defined in terms of cylinder diameter (D) and free stream velocity (U),
Re=UD/v . A mesh with 170 points in the radial direction and 128 points in the
angular direction has been used in all simulations. There are about 30 points in
the boundary layer with this mesh. A non-dimensional time step, Ut/D, equal to
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0-005 has been used. Lift and drag coefficients, for the case of a fixed circular
cylinder at a Reynolds number equal to 200, are shown in figure 1. The wake
structure, represented by the point vortices, is shown in figure 2.

In the simulations for Re = 200 vortex shedding occurs with a Strouhal
number of about 0-2. This value is very close to those observed in experiments
for Re between 200 and about 2 x 10°. For Re = 200, the wake is still laminar
and hence no turbulence model is needed. The non-dimensional parameters n,
and V, in the simulations have been kept equal to those measured in the
experiments of Parra [11].

The experimental results of Parra [11] were obtained in a water tank
facility, with a circular cylinder free to oscillate transversely with = 0-01710
and n = 0-34681 . The experiments were conducted with a circular cylinder of
D = 0-11m and @, = 2-238 rad/s. The flow velocity U was varied in order to
change the reduced velocity. The Reynolds Number Re of the experiments
varied in the range 14410 to 50380. In the numerical simulations, the velocity
U and diameter D of the cylinder have been fixed for all calculations, and the
natural period T, has been varied to change the reduced velocity. The non-
dimensional amplitude of the cylinder transverse oscillation A/D has been
plotted as a function of the reduced velocity UT,/D. The experimental and
numerical results can be seen in Figure 9.

Simulations have been carried out for values of reduced velocity, V,,
from 2:0 to 14-0. In figures 3, 4, and 5 force time histories and cylinder
displacements are show for V, equal to 5-0, 7-5 and 12.5, respectively. The
highest amplitude of oscillation occurred for a reduced velocity equal to 5-0,
and this is also the reduced velocity for the highest value of the mean drag
coefficient. As the reduced velocity is increased above 5, the amplitude and
mean drag coefficient decrease. The phase angle by which the lift coefficient
leads the cylinder displacement changes dramatically as the reduced velocity
varies from 5-0 to13-0. This result has been observed in experiments (as can be
seen in the review by Parkinson [11]), and also in simulations where the
cylinder is forced to oscillate (Meneghini and Bearman [7]). Plots of the wake
structure for these cases are shown in figures 6, 7, and 8. The plots are for the
moment when the cylinder is in its upper most position. The wake structure for
V; equal to 5-0 has a distinctive pattern with the vortices in the wake exhibiting
a large lateral spacing.

The maximum amplitude, non-dimensionalised with the cylinder
diameter (D = 2-0 in our simulations), versus the reduced velocity is plotted in
the graph shown in figure 9. The experimental results by Parra [11] and Khalak
and Williamson [5] are also shown and compared with the present simulations.
As can be noticed, the maximum amplitude from the simulations is
considerably lower than those found in the experiments. The reason for this
disagreement is not yet known. The explanation could be related to the
difference in Reynolds number in the experiments and in our simulations.
However, Brika and Laneville [3] and Khalak and Williamson [5] have shown
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from experiments that there may be two possible values for the maximum
amplitude associated with either an upper or a lower branch to the amplitude
versus reduced velocity curve. Also there is known to be a hystersis associated
with moving between the two branches. The values of mass and damping in
Khalak and Williamson’s experiments are reasonably close to the ones used in
the simulations and it is interesting to note that the maximum amplitude for
their lower branch is about 0-6, which is similar to the maximum value
computed here. Brika and Laneville [3] contend that the mode of shedding is
different in the two branches and, following the nomenclature of Williamson
and Roshko [13], find the 2S mode in the lower branch and the 2P mode in the
upper branch. In the 2S mode two vortices are generated per oscillation cycle
and in the 2P mode two vortex pairs are formed per cycle. It is clear from
figures 6, 7 and 8 that the computed flow is in the 2S mode, which is
compatible with the levels of amplitude predicted. More work is required to
determine if the vortex shedding can be encouraged to change into the 2P mode
and whether this results in larger amplitudes.

The results shown in this paper are part of a research project that is still
been carried out. The next steps will to be investigate whether it is possible to
cause the vortex shedding mode to change and to implement the Vortex
Method with a turbulence model, hence increasing the maximum Re that would
be possible to simulate in the computer.

6 Figures

= Figure 2- Wake structure for
e — Re=200

Figure 1 - Force coefficients for
Re=200
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Figure 3 - Results of Cl, Cd and Yb for UT,/D =5-0
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Figure 5 - Results of Cl, Cd and Yb for UT,/D =12-5
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Figure 6 - Wake structure for
UT,/D=5-0

Figure 8 - Wake structure for

UT/D=12-5
Figure 7 - Wake structure for
UT,/D=7-5
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Figure 9 - Non-dimensional amplitude of the circular cylinder transverse
oscillation as a function of the reduced velocity
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