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Abstract

The German navy is about to implement a modular naval artillery concept. This
means that weapon systems used by, e.g., the army will be introduced on navy
vessels. One main project is the installation of the turret of the 155mmL52 Panz-
erhaubitze 2000 (PzH 2000, armored self propelled howitzer 2000) on frigates of
type 124 and 125. It is an important goal to achieve with this weapon system high
fire power, long ranges and high accuracy. High accuracy is especially important,
since smart weapons (like e.g. SMArt155) shall be used. Additionally, the weapon
system should be able to fire while the weapon carrier is moving, and also, while
the target is moving. Looking at the desired firing ranges of up to 50 miles, this
is a principal challenge for fire control algorithms and software. Not enough, the
algorithms should be able to work in real time, i.e. compute fire orders in less than
a second. In this paper the basic solution to this problem will be given by using
a specially developed method in combination with the NATO armaments ballistic
kernel (NABK). The problem of circular error probability (CEP) increase because
of moving weapon/target will also be discussed.
Keywords: modular naval artillery concept, howitzer, frigate, indirect firing, mov-
ing weapon, moving target, fire control, circular error probability.

1 Introduction

A consortium consisting of Howaldtswerke-Deutsche Werft, Krauss-Maffei Weg-
mann and Rheinmetall W & M recently proposed a new artillery concept for navy
vessels. It is named MONARC: modular naval artillery concept for naval gun fire.
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Goals of this concept are:
• to increase the range and effectiveness of ship-mounted artillery and ammu-

nition in naval warfare,
• to deliver a variety of ammunition types to distant targets from seaborne

platforms onshore,
• to use well introduced German heavy-calibre artillery systems for ground

forces,
• to complete the project without expensive R & D efforts in a short time.

To show the feasibility of the concept, a complete PzH 2000 turret has been
temporarily mounted to the foredeck of the F124-class frigate Hamburg, see fig. 1.
It was shown that the necessary modifications to existing and future warships are
relatively inexpensive and that the weapon system still remained fully operational.

Figure 1: Frigate Hamburg with mounted turret of PzH 2000.

However, some problems still have to be solved:
• structural problems: mount a big gun onto a small vessel (space, mass,

recoil),
• material problems: corrosion of the gun and the turret,
• ammunition: storage and handling have to be modified,
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• fire control: the gun has to be stabilized, new fire control algorithms have to
be developed, and the increase of CEP has to be investigated.

This paper deals with the development of fire control algorithms in case of mov-
ing weapon and/or target and the estimation of CEP increase due to movements of
the ship: pitch, roll, yaw and the 3D surface velocity vector (including heaving).
Since a new gun stabilization system will be used, the increase of CEP due to these
factors should not be too dramatic.

For fire control the NATO armaments ballistic kernel according to STANAG
4355 (modified point mass model [1]) will be employed. It computes from a multi-
tude of input data (e.g. weapon position, target position, ammunition data, weather
data) azimuth α and elevation ε of the gun. In its version 6.0 (20 February 2004)
it is not able to compute fire orders for moving weapons and/or targets. As it can
be easily shown by some simulations, the deviations from the aimpoint are rather
large if weapon and/or target are moving. Given the following data: (i) the weapon
is in the point of origin of the coordinate system, (ii) the target is 10 000 m north of
the weapon, i.e. α = 6389.0 mils, ε = 417.3 mils, then the following deflections
occur:

• if the weapon is moving with 15 m/s (appr. 30 knots) east, then the resulting
deflection will be appr. +330 m,

• if the weapon is moving with 15 m/s west, then the resulting deflection will
be appr. -340 m.

The differences between east movement and west movement are mainly due to
Coriolis forces. This simple example clearly shows that an appropriate fire control
algorithm has to compensate for the movement of weapon and/or target to deliver
ammunition precisely.

2 Fire control for moving weapon and/or target: idea

The main idea of the following approach is to find a fire solution for indirect or
direct firing with a minimal number of solutions of the equations of motion of
exterior ballistics when there is an arbitrary relative movement between weapon
and target.

It is important to emphasize that the number of solutions of the equations of
motion has to be small. If this is not the case, computation time will be large, and
the solution would be impractical. One could imagine to use two nested loops for
α and ε with very small increments like 0.1 mils and iterate until a fire solution
has been found. This was tested and the results were impractical: some 10 000
solutions of the equations of motion, or computing time in the range of some 10
minutes.

The task of finding a fire control solution with a minimal number of integrations
of the equations of motion is solved as follows:

a) In specific points of the weapon and the target a coordinate system will be
fixed: CSweapon, CStarget. It makes sense to fix CSweapon at the muzzle,
since computations will be simplified in this case.

b) When the projectile leaves the barrel, the time t will be set to zero.
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c) When the projectile leaves the barrel, the position vector of the projectile �r
will be set to the zero vector�0, cf. a).

d) When the projectile leaves the barrel, CSweapon becomes the inertial system
I�.

e) The resulting initial velocity �v�
0 is the vector sum of the initial velocity �v0

and the velocity of the muzzle �vmuzzle with respect to I�: �v�
0 = �v0+�vmuzzle.

f) The movement of the target, represented by CStarget will be determined
relatively to I�. Therefore, two time depending vectors can be calculated:
(i) the position vector �rrel of the relative movement between weapon and
target, and, (ii) the vector �vrel of the relative velocity between weapon and
target.

g) The vector of the absolute wind velocity with respect to I�, �vwind, will
be corrected by using the known vector �vrel, thus giving a corrected wind
vector �vcorr

wind.
h) A function J(α, ε) with the following property will be constructed:

J(α, ε) = 0, if after a certain time of flight tflight the position vector of
the projectile �r is sufficiently close to the relative position vector �rrel.

i) The zero of J(α, ε) can be sought with different methods for zeroing func-
tions with two or more variables (e.g. Newton-Raphson method[2]). The
resulting values (α�, ε�) are the fire control solution.

3 Fire control for moving weapon and/or target: algorithm

We consider I� to be a cartesian coordinate system with axes (x, y, z). For t =
tflight the vectors �r(tflight) and �rrel(tflight) should be equal in I�, thus giving:

x(tflight) = xrel(tflight),

y(tflight) = yrel(tflight),

z(tflight) = zrel(tflight).

Since we have only two variables, namely α and ε, we need a third variable to
satisfy the above equations. This will be the time of flight tflight. The integration
of the equations of motion will be continued, until z(tflight) = zrel(tflight), or at
least:

‖(z(tflight) − zrel(tflight))‖ ≤ ε̃.

Therefore tflight is not longer unknown and we have a well defined problem: A
system of 2 nonlinear equations with the two unknowns (α, ε). Now we can define:

x̃(α, ε) = x(tflight) − xrel(tflight),

ỹ(α, ε) = y(tflight) − yrel(tflight),

and

J

(
α

ε

)
=

(
x̃(α, ε)
ỹ(α, ε)

)
=⇒ 0.
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Having found the values (α�, ε�) which provide a zero of J, the fire control
solution is found.

With the Jacobian J̄ of the problem:

J̄ =

(
∂x̃
∂α

∂x̃
∂ε

∂ỹ
∂α

∂ỹ
∂ε

)

a Newton-Raphson iteration scheme with index i = 1, 2, . . . can be written as
follows: (

α

ε

)i+1

=

(
α

ε

)i

− J̄−1
i

(
x̃

ỹ

)i

,

with

J̄−1 =
1

( ∂x̃
∂α

∂ỹ
∂ε − ∂x̃

∂ε
∂ỹ
∂α )

(
∂ỹ
∂ε −∂x̃

∂ε

− ∂ỹ
∂α

∂x̃
∂α

)
.

To start the computation of a fire order an initial approximation (α0, ε0) is
needed. It turned out that the actual azimuth of the target is a good approximation
for α0. The initial guess for the elevation ε0 can be provided by a built in NABK
function or a simple ballistical table, since the distance to the target is known. The
following loop will give a precise result after a maximum of 4 iterations with three
integrations per step:

1. Integrate the equations of motion with the initial guess (α0, ε0).
2. Integrate the equations of motion with the actual α+δα and save the results.
3. Integrate the equations of motion with the actual ε + δε and save the results.
4. Compute from steps 1,2,3 (or 6., respectively) the partial derivatives ∂x̃

∂α , ∂ỹ
∂α ,

∂x̃
∂ε , ∂ỹ

∂ε .
5. Perform a Newton-Raphson step.
6. Integrate the equations of motion with the new values. If the fire solution is

precise enough: stop, else goto 2.

4 Fire control for moving weapon and/or target: example

Combining the developed algorithm with NABK provides a software which is
able to compute fire orders in less than a second on common Personal Comput-
ers. Therefore a high flexibility of warfare and also an engagement with several
targets is possible.

Figure 2 shows an example for the application of the fire control software. The
moving weapon W is in the center of the picture. The numbers indicate, how many
iterations were necessary to find a fire order. The fixed data of the example are:

• weapon and target altitude 0 m,
• low angle of fire,
• target grid spacing 1000 m,
• weapon azimuth is 1600 mils, i.e. weapon is moving east (to the right in the

picture) with 15 m/s,

© 2005 WIT Press WIT Transactions on Modelling and Simulation, Vol 40,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Ballistics II  395



• target azimuth is 4800 mils, i.e. the target is moving west (to the left in the
picture) with 15 m/s,

• weapon is PzH 2000.
It can be seen that in this example (i) after a maximum of 3 iterations a fire control
solution was found, if one existed for the used ammunition and target distances,
and (ii) the larger the distance of the moving target, the larger is the number of
iterations necessary to find a fire order.

Figure 2: M107, DM74, M4/6W, maximum shooting distance 10 000 m.

5 Circular error probability (CEP)

5.1 Definition of CEP

CEP is the radius of a circle which includes x % of the values of a sample [3].
The percentage x is often written as a suffix, e.g. CEP20 for 20%. If no suffix is
provided, 50% is the usual default value for military purposes.

The general definition of CEP is:

Pρ =
1

2π
√|Φ|

∫ ∫
x2+y2<ρ2

e−
1
2 (x,y)Φ−1(x,y)t

dxdy.

Pρ is the probability that a random vector N (0, Φ) will be mapped in a circle with
the radius ρ. It is possible to simplify the above double integral with the help of a
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Bessel function of order 0, I0, which results in:

Pρ =
b

a

∫ ρ
b

0

I0

(
1
4
t2
(

b

a
− 1
))

e
− 1

4 t2
(
1+( b

a )2
)
tdt,

with t = r
b and a, b as the eigenvalues of the variance-covariance matrix Φ:

Φ :=

(
σ2

x σ2
xy

σ2
yx σ2

y

)

For numerical computations the following formula can be derived by using a
Frobenius series:

Pρ = 1 − 2β

β2 + 1

∞∑
k=0

(
β2 − 1

)2k

(k!)2 4k (β2 + 1)2k
Γ
(

2k + 1,
β2 + 1

4

(ρ

b

)2
)

,

with β = b
a , and Γ(k, x) as the incomplete Gamma function which is defined as:

Γ(k, x) =
∫ ∞

x

ξk−1e−ξdξ.

However, it is still difficult to estimate CEP with the above formula. The com-
puter algebra system MAPLE uses the following formula for the incomplete
Gamma function:

Γ(k, x) = Γ(k) − xk

k
1F1 (k, 1 + k,−x) .

Here Γ(k) is the complete Gamma function and 1F1(n, d, z) is Barnes’s
extended hypergeometric function:

Γ(x) =
∫ ∞

t=0

e−ttx−1dt,

1F1 =
∞∑

t=0

Γ(k + t)Γ(k + 1)(−x)t

Γ(k)Γ(k + 1 + t)t!
.

To compute the complete Gamma function we use the Lanczos approximation.
It provides the Gamma function for positive real numbers with an accuracy of
|ε̃| < 2 · 10−10 which is completely sufficient for the estimation of CEP:

Γ(x) =

(√
2π

x

(
p0 +

∑
n=1...6

pn

x + n

))
(x + 5, 5)x+0,5 e−(x+5,5),

with

p0 = 1.000000000190015,
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p1 = 76.18009172947146,

p2 = −86.50532032941677,

p3 = 24.01409824083091,

p4 = −1.231739572450155,

p5 = 1.208650973866179 · 10−3,

p6 = −5.395239384953 · 10−6.

5.2 Estimating CEP

CEP can be estimated either by using experimental data or by simulations. Using
experimental data, one can straightforward estimate the elements of the variance-
covariance matrix Φ from the coordinates of the impact points and compute CEP
according to the equations given in the last section.

In case of simulations one has to know specific data of the weapon platform, i.e.
the gun and the ship. It is known that in case of resting weapon and target the max-
imum error of the gun is 0.3% . . . 0.4 % of the shooting distance. So the question
arises, whether in case of moving weapon and/or target there will be a substantial
increase in CEP. In that case mainly the errors of the weapon stabilization system
and the measurement error of the velocity vector of the ship are important input
data for numerical simulations. Using that information one can generate data sets
consisting of nominal values of the ship velocity vector, azimuth and elevation
± small deviations. The deviations can be generated by using a random number
generator which provides a desired probability density function, e.g. a Gaussian.
With these data one can determine the deviations from the coordinates of the nom-
inal hitpoint caused by the random fluctuations by integration of the equations of
motion. Consequently, the elements of Φ can be estimated, and finally, CEP can
be computed.

Since it might be time consuming to write a computer program for the computa-
tion of CEP according to the equations of the last section, a self-explaining Maple
script is given, which computes CEP from the elements of Φ.
> restart:with(stats):with(describe):

> # Computes CEP from the elements of Phi

> cep:=proc(sigmaX,sigmaY,covXY)

> local sigmaXk,sigmaYk,og,sigma,PGamma,beta,dummy:

> with(linalg):

> if abs(covXY) > 0.95*sigmaXˆ2 then return(‘covariance too large‘) fi:

> if abs(covXY) > 0.95*sigmaYˆ2 then return(‘covariance too large‘) fi:

> sigma:=matrix(2,2,[sigmaXˆ2,covXY,covXY,sigmaYˆ2]):

> sigmaXk:=evalf(sqrt(eigenvalues(sigma)[1]));

> sigmaYk:=evalf(sqrt(eigenvalues(sigma)[2]));

> if abs(sigmaYk-sigmaXk)<5e-9 then sigmaYk:=sigmaYk+1e-8: fi:

> if (sigmaYk>=sigmaXk) then

> dummy:=sigmaYk; sigmaYk:=sigmaXk; sigmaXk:=dummy;

> fi;

> beta:=sigmaYk/sigmaXk;
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> PGamma:=(rho,beta,sigmaYk)->1-2*beta/(betaˆ2+1)

> *

> sum(

> (betaˆ2-1)ˆ(2*k)/(k!*k!*4ˆk*(betaˆ2+1)ˆ(2*k))

> *

> GAMMA(2*k+1,(betaˆ2+1)/4*(rho/sigmaYk)ˆ2)

> ,k=0..20

> );

> # Now CEP x% (x=0.5-> CEP 50%)

> og:=5.0*sqrt(sigmaXkˆ2+sigmaYkˆ2):

> fsolve(PGamma(rho,beta,sigmaYk)=0.5,rho,0..og); # Result is CEP

> end proc:

5.3 CEP example

The common parameters for the CEP examples according to table 1 are: (i) shoot-
ing distance 25 000 m, (ii) projectile M549A1, (iii) high angle, (iv) vessel goes
north (0 mils), (v) standard deviations are σv ≈ 0.3 m/s, σα, σε ≈ 0.3 mils which
is close to real values.

In table 1 it can be seen that CEP resulting from moving weapon and/or target
is much smaller than the CEP of the gun itself. Therefore concept MONARC can
be deployed from the point of view of exterior ballistics.

Table 1: CEP examples: + means that the corresponding standard deviation was
present in the simulation. CEP was computed from 500 simulation runs.

aimpoint/mils σv σα σε CEP/m

0 + - - 1.35

1600 + - - 1.49

0 - + + 13.01

1600 - + + 12.79

0 + + + 13.18

1600 + + + 12.81

6 Conclusions

In this paper a fire solution for moving weapon and/or target for direct and indirect
firing was proposed. The increase of CEP due to this approach was estimated.
Examples show that the approach works well and the increase of CEP due to the
relative motion of weapon and target can be neglected. The next step will be the
experimental verification of the theoretical fire solution.
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