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Abstract

A cavity, or a flux on the boundary of a cavity inside of a planar domain is
to be determined from electrostatic or thermostatic measurements taken on the
domain boundary. This inverse problem is solved by an optimization method,
along with the Green's function modification of a boundary integral formulation
of an elliptic partial differential equation which models voltage or heat conduc-
tion inside of the domain.

1 Introduction

Melnikov^ has developed techniques which make it possible to obtain rep-
resentations for Green's functions or matrices for elliptic partial differential
equations with mixed boundary conditions, on domains of a variety of sim-
ple shapes. These Green's functions have found application to a number
of problems in applied mechanics; to name a few, optimal shape design,
contact mechanics with fixed or unknown contact zones, elastic and elasto-
plastic torsion, heat conduction̂ '̂ . In this paper, Green's functions are
used to solve inverse boundary value problems of internal cavity detection
and flux reconstruction in planar domains.

In such inverse problems, a domain is occupied by an electrically or
thermally conductive material which contains an internal flaw, perhaps an
inclusion which has conductivity different from the surrounding material,
or a cavity. From electrostatic or steady state thermal measurements at the
boundary of the domain, we would like to characterize the internal flaw,
or some other unknown property such as current flux across its boundary,
under the assumption that voltage or heat satisfies Laplace's equation inside
of the domain.
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122 Boundary Element Technology XII

Several boundary element methods for solution of this type of prob-
lem have been proposed during the last decade. Notably, Bryan^ derived
an algorithm for thermal detection of a cavity and obtained convergence
and continuous dependence results, as well. Boundary element methods
have been applied to detection of cavities*'**'**, crack detection problemŝ '̂
identification of unknown boundary conditions^'**, and determination of
regions of different conductivity*^. Tanaka*^ gave a survey of boundary
integral solutions for inverse problems with potential, elastostatic, and dy-
namic models. Several more examples are contained in the bibliographies
of the above-mentioned references.

First, we reformulate the inverse problem as an integral equation on the
boundary of the cavity. Then a least squares method is used to minimize
the difference between data measured on the boundary and approximate
data produced by the integral equation solution of the direct problem which
contains the guessed cavity or flux. Previous boundary element methods
for this type of problem used integral equations, but these equations were
situated not only on the flaw boundary, but on the boundary of the larger
domain, as well. Some advantages to using this Green's function method,
then, are immediately obvious. Reduction in computation time occurs,
especially during the optimization stage of solution, during which Laplace's
boundary value problem must be solved repeatedly, at each iteration, in
order to update approximate boundary data. Modification of grid spacing
to treat domain boundaries with corners^ is unnecessary. A Green's function
method can solve inverse problems in domains with infinite boundaries. Not
least, in a boundary integral equation formulation of the direct problem
for Laplace's equation, the error is the difference between a single-layer
potential and the true solution, so that the error is a harmonic function and
has its maximum on the boundary of the domain; by eliminating the integral
over the domain boundary, the maximum error is confined to the boundary
of the guessed cavity; hence, simulated outer boundary data, which is used
at each iteration as part of the minimization process, will contain less error
than simulated data in boundary integral methods which utilize integrals
over the outer boundary.

In section 1, the Green's function boundary integral method is given
for solution of the elliptic partial differential equation (the direct problem);
two inverse problems are formulated in section 2; in section 3, an algorithm
is proposed for solution of the inverse problems; examples are presented in
section 4; and numerical results are presented in section 5.

2 Direct Problem

Let H be a domain in the complex plane C, with piecewise smooth boundary
m

r = U r.
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Boundary Element Technology XII 1 23

Suppose that an electrically or thermally conductive material occupies 0,
and that its conductivity is constant. The boundary value problem for
voltage or temperature u in fi is

A% = -/ zeO (1)
a?/

a,— 4-/%% = 0 zET,, 2 = l,...m (2)

where A is Laplace's operator, a,, /?,- are known functions not simultaneously
zero on I\, and n,- are unit normal vectors exterior to I\; see Vekua^ for
theoretical details of this problem.

Let G(z,£) be the Green's function which satisfies the boundary condi-
tions (2) on F and

that is, G has the property that as z — > £, G(z,£) — > ( — l/27r)ln
then the solution u to (1), (2) may be written as

(3)

zen (4)

Now consider this related problem: that within H, there exists a hole D
with boundary TO, D C fi; and

-Aw = / zeO\D (5)

&i— + fan = hi z G T,-, z = l,...,m (6)

*̂
< x o ~ - + Pou = g z G TO (7)

where possibly g = 0.
In case g is not identically zero on TO, but / = 0 and all hi = 0, i > 1,

the solution u can be constructed as follows. For z G 0 \ D, let

(8)

where G is the Green's function in (3), and take advantage of the logarithmic
singularity of G by substitution of (8) into the well-known jump formula for
the limit as z — >• TO of the first normal derivative of a single layer potential^
to obtain

This formula, along with the boundary condition in (7), gives

1 F dG
-aojj,(z) — I [OLQ——(£,£) + /3oG(z,£)]fj,(£)drt = g(z}, z G TO (9)
2 JFo on®
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1 24 Boundary Element Technology XII

where the normal derivative is with respect to z. This is a Fredholm integral
equation for the density /j(z), z £ FQ. In general, this equation is ill-posed,
but it is not hard to imagine conditions on ao, /?o? e.g. ao = 1, flo — 0, that
make (9) an equation of the second kind, for which it is well known that a
unique solution exists. Once this equation is solved for JJL on TO, (8) gives
the solution u.

In the second case, g may or may not be identically zero, with nonho-
mogeneous boundary conditions A, ̂  0, z > 1, We obtain, if possible, a
twice differentiate function h for z G fi which satisfies the mixed condi-
tions (6) on F. Then, considering only the special case a$ — 1, 0Q = 0,
let v — u — h, and solve (5) for v in 0 \ D with f(z) — — AA(z), and
homogeneous boundary conditions, except for where

(10)

In this case, multiplication of (5) by G, integration of both sides with respect
to £, and integration by parts give the solution

Now, if z — » TO, then the jump formula can be used to obtain a Fredholm
equation of the second kind for v on FQ

where the right hand side consists of known functions. Once solved for v on
FQ, the formula (11) yields v for z (£ FQ. Then, u — v + h. Note that the two
dimensional integrals (11), (12) can be converted by means of integration
by parts to boundary integrals, since / = VA.

3 Two Inverse Problems

The first inverse problem: Suppose H contains a cavity D with bound-
ary FQ, the location, size, and shape of which are unknown and inaccessible
to measurement. Assume that g is a known function on FQ. Then, given ao,
/?o, and assuming that (5), (6), (7) hold, determine D from one additional
measurement Mi[u] — Si on some accesible part F, of the boundary F. The
Si could be, for example, flux, or voltage or temperature.

The second inverse problem: Suppose that the location, size, and shape
of the cavity D are known, and that ao, /% are given, but the function g on FQ
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Boundary Element Technology XII 125

is undetermined. Assuming (5), (6), (7), plus one additional measurement
Mi[u] = Si for some z, taken on part of F, determine g.

Note that TO and g cannot be determined simultaneously from a single
measurement pair (A,-, 5,-), on I\, for any or all i — 1,..., m. An additional
pair of experimental measurements on F would be required. To see this, let
£* G H. For any hole D in 0 which contains £*, let g on FQ, the boundary of

D, be given by #(z) = ao<9G(z,n/9no + A)O(z,r)- G'(z,f*) satisfies (5)
with / = 0 for z £ D. Assuming that D is uncharacterized, then so will be
g on its boundary; yet data on F will be identical for all D which contain £*.

4 Method of Solution

Here, an iterative method is proposed for numerical solution of the inverse
problems, in which successive approximations are improved by means of a
least-squares method^.

In the case / = 0 and data hi = 0 for all z = 1,. .. , ra, the algorithm
begins as follows: 1) Collect measurement data s,- on F, for some of the
z = 1,... ,?7i. 2) Make an initial guess D with boundary FQ for unknown
D in the first algorithm; or g for unknown g in the second inverse problem.
3) Substitute this initial guess in formula (9), solve the resulting integral
equation for //, and use (8) to obtain simulated measurement 5,- on the I\.

Now consider the functional

which, for practical purposes, is a summation determined by, say, the trape-
zoid rule for numerical integration. Here, c is a set of parameters which
characterize FQ in the first inverse problem, g in the second. We wish to
find D or g which minimizes the difference F of simulated measurement
S{ and measurement Si. In inverse problem 1, a parameterization which
characterizes the guess FQ must be available, of form £(r) = £(r; c), where
0 < r < a. In inverse problem 2, g(r) = g(r; c), where ̂  is given.

Then, assuming that c + <5, with 6 to be determined, gives the closest
parameterization of the unknown, consider the first order Taylor approxi-
mation of F,

where

k i j — i j k

for k = 1,..., n yields the matrix equation
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126 Boundary Element Technology XII

where the n x n matrix A = (a*j) and q = (#1,...,#%) have entries

and

9t
/ H a .
>-,-(& c)-*(0).p(fc

-1 (/y

respectively. Note that A already has square form A = P^P suitable for
application of a corrected Gauss-Newton scheme^.

The derivatives dsi/dcj, for z G I\, are calculated on the parameteriza-
tion of the integral (8), with £ = £ in case g is to determined,

as follows:

where the second two integral terms are zero in case FQ is known and g is
to be determined.

The derivatives dfi/dcj are calculated from integral equations derived
from (9), for 0 < 4 < a

^̂ ^

where the dg/dcj term are zero if D is to be determined; the integral term
on the right is zero if D is known and g is to be determined.

Hence, the next step 4) is to solve for 8 by means of the corrected Gauss-
Newton scheme^. Then 5) update c by letting c = c + 6. The procedure
is repeated until a convergence criterion is met, say ||VcF|| % 0. The
final output c should parameterize the approximate solution to the inverse
problem.

In case g = 0 on TO, or is near zero, hence too weak to produce useful
data Si, we must assume that on some F,, a stimulus hj ̂  0 is applied for
some j — 1, . . . , m, and a corresponding response s,- is measured on a I\. In
this case, we assume that ao = 1, /?o = 0, so that g represents flux across
TO, and use the formulae (11), (12) instead of (8), (9), to simulate data, and
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Boundary Element Technology XII 127

to obtain the derivatives of simulated data. The two dimensional integrals
in (11), (12) must be converted to boundary integrals, before differentiation
with respec to parameters.

5 Examples

1. Let ft be the right circular sector of radius R, ft = {z — re^ : 0 <
r < R, 0 < 0 < 7T/2}. For the boundary F, FI is the circular part, F2 is
the interval [0, J?] on the x-axis, Fg is the interval [0,fi] on the y-axis. The
Green's function (3) for ft with mixed boundary conditions

du. . du.
ftTlr,=«lr, = ̂|r,=0 (13)

is

"" 2 |z-f||z-

For the inverse problems 1 and 2 in ft, we suppose that F% and FS are
insulated, F2 is grounded, i.e., (13) holds, and flux du/dno = g on FQ. Then
voltage or heat u = 53 is measured on Fg, and the method of section 3 is
applied to determine D or g. In inverse problem 1, if g = 0, then we assume
FI and FS are insulated and apply a voltage or heat u = hi ̂  0 to F2, so
that

du du

where h^ is smooth and has compact support in F2- Then voltage or heat
u — 83 is measured on Fg. In order to apply formulae (11), (12) to this
problem, let h(r,6) = /i2(r)cos2$, so that h satisfies (14) on F.

2. ft is an infinite strip, ft = {z : 0 < Imz < Tr/2}. FI is the line
Imz = 0, F2 is the line Imz = ?r/2. Let

Ei(p) = |e^ + 1|, E2(p) = e^ - 1| (15)

Then the Green's function for ft with boundary conditions

fill TT
w(±oo, y) < oc (16)

s

- ^_
=- (17)

2-^)

For the inverse problems, suppose (16) is satisfied, i.e., the boundary F
is grounded on FI and insulated on F2, measure voltage or heat u — s^
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128 Boundary Element Technology XII

on part of I\ and apply the method in section 3. If g = 0 on FQ, then
keep 1^2 insulated and prescribe u = hi on I\, where hi is smooth with
compact support, and measure u — s% on IV For application of (11), (12),
let h(z) — hi(x] cos(y]

3. Let 0 = {z : 0 < Rez,0 < Imz < TT} be a semistrip, with I\, Fg, Fg
the lower, left, and upper boundaries, respectively. Prescribe

r\
-̂ (0, 2/) = I/(̂ , 0) = W(?T, 0) = 0, 2/( + 00, 2/) < 00 (18)

on F. Let E — E^ from (15). Then the Green's function for 17 with boundary
conditions (17) is^

6 Numerical Results

Numerical implementation has begun in the cases of examples 1 and 2.
For example, in the case of the infinite strip, we have the following result.

The unknown domain D is nonconvex and depends on four parameters,
with boundary FQ given by £(r; c) = Ci+z'c2-h(l — casmSr^e"", 0 < r < 2?r;
see figure 1, below. Flux on FQ is given as g(r) = 2sin(r/2), and data is
collected at twenty-five points equally spaced on the interval [0,4] x {?r/2}.
In figure 1, the unknown domain has parameters CQ = (0, .7, .2, .3), and
the initial guess is c = (2.5, .8, 0, .45). An iteration that exceeds the strip
boundary is placed back inside of the strip; similarly, €3 is constrained to
fall between 0 and .3. In this case, the Euclidiean norm ||c — CQ|| converged
in sixteen iterations to less that 10~^ units. Future plans include finding
the limitations of the algorithm under conditions such as noisy data.

Figure 1:
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