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ABSTRACT

We show how to extend the method of fundamental solutions (MFS) to solve
Poisson's equation in 2D without boundary or domain discretization. To do this
an approximate particular solution is found by approximating the right hand side
by thin plate splines. The particular solution is then subtracted from the complete
solution and then Laplace's equation is solved by the usual MFS. Numerical
results are obtained for a number of standard boundary value problems with 3-4
figure accuracy attainable by solving fewer than 20 linear equations.

1 INTRODUCTION

One of the major advantages of the BEM over the Finite Element and
Finite Difference methods is that only boundary discretization is usually
required rather than the domain discretization needed in those other meth-
ods. However, if the differential equation to be solved is inhomogeneous,
the BEM becomes less attractive because integral reformulations generally
involve a domain integral whose evaluation may consume the majority of
the computation time [1]. Moreover, if the boundary of the domain is com-
plicated, boundary discretization can become quite complex, particularly in
three dimensions. Consequently, it is of some interest to develop numeri-
cal methods which require neither domain nor boundary discretization. In
the spirit of the BEM, the method of Fundamental Solutions (MFS) has
been used for homogeneous elliptic equations and because of its simplic-
ity and rapid convergence, it is of interest to extend this latter technique
to solve inhomogeneous partial differential equations. In some cases where
a known particular solution is available, this has been done [3], but no
method for general inhomogeneous problems seems to have been given. As
a consequence, it is the purpose of this paper to propose an algorithm which
extends the MFS to inhomogeneous equations in such a way that neither
boundary nor domain discretization is needed.
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300 Boundary Element Technology

To be more specific, we consider solving well-posed boundary value
problems for Poisson's equation

Au = / (1)

on a bounded domain D in RA To solve (1) numerically, we first reduce
it to Laplace's equation by subtracting a particular solution v from u. If
u = u — f, then u satisfies

Aw = 0, (2)

with boundary conditions for u derived from those for v. Once v is deter-
mined, u is obtained using the MFS. If / is simple, v may be calculated
analytically. However, for general f's only approximations for v are gen-
erally available [5]. In the past decade this approximation problem has
been extensively studied in relation to the BEM where a number of alter-
natives to cell integration have been proposed. At present the most widely
used technique seems to be the Dual Reciprocity Method (DRM) where /
is approximated by a finite series of radial basis functions (rbfs) with an
approximation v to v calculated analytically from /. In much of the work
on the DRM, the choice of rbfs appears to be arbitrary. To improve the
efficiency and reliability of rbf approximation, we have used a theorem of
Duchon which suggests the use of thin plate splines as optimal basis func-
tions [6, 7]. Our numerical results for two-dimensional problems bear this
out.

The paper is divided into seven sections. In Section 2, we briefly
review the MFS for solving Laplace's equation. In Section 3, we develop
a method for approximating particular solutions to (1), with emphasis on
the theory and use of rbf approximations. In Section 4 we outline our
algorithms for solving (1) for two dimensional problems. In Section 5, we
give some a-priori error estimates for our method for the Dirichlet problem
showing that the L^ error in approximating u can be bounded in terms of
approximation errors of the data. To the best of our knowledge, these error
estimates are new.

In Section 6 we give numerical results for a set of standard 2D prob-
lems. Comparison with analogous results for the BEM using standard DRM
approximations and recent results of Allesandri and Tralli [8] using bicu-
bic splines, shows that our approach is more accurate and more efficient to
implement. We conclude with some directions for future work.

2 THE MFS FOR LAPLACE'S EQUATION

As we indicated in the Introduction, we will solve Poisson's equation by
reducing it to Laplace's equation (2). To solve (2) we use the MFS, which
has been shown to be a highly accurate and efficient numerical technique
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Boundary Element Technology 301

[2, 4]. For completeness, we summarize the essential aspects of this method

here.

Let D be a bounded simply connected set in R^ with boundary S
(this restriction can be relaxed) and let S;, i = 1, 2, • • • , m be a partition
of 5". That is 2 = Û ,̂ and 2, H 5, = 0, 2' f j. We consider solving the
boundary value problem

Au(P) = 0, PeD, (3)

with boundary conditions

B,(u)\s, = 0, i = l,2,.--,m, (4)

where {.B,}™ i are differential operators (possibly nonlinear) and B,(u) \s, is
the restriction of Bi(u) to 5,-. We assume that (3)-(4) has a unique solution.

To approximate the solution to (3)-(4) we use the MFS. For this, let

G(P,Q) = \og\\P -Q\\/2x, (5)

= (z:,2/i) ,g = (xa,y,) , \\P - Q\\ = (*: - xrf + (m - y r f b e the

fundamental solution to Aw = 0, and let

#(D) = {ii : Au(f ) = 0, f E D} (6)

be the set of harmonic functions in D. Let T be a curve in R^ with D in
its interior. Assume that {Qk}̂ -i is a dense set of points in T and let

H'(D)= span{G(P,Q*)}~,UR, P € D. (7)

If D is connected and S is a Lyapounov curve, then it was shown in [2]
that H'(D] is dense in H(D). Thus every harmonic function u can be
approximated arbitrarily closely by a function of the form

6=1

In [3] Bogomolny improved on the results in [6] and showed that T could
be taken as a circle with radius R and that {c&}&_i U {c} could be chosen
so that Un converges exponentially fast in n and R if u and 5 are analytic.

The above results suggest that an efficient algorithm for solving (3)
can be obtained by looking for approximations to u in the form (8) and then
trying to satisfy the boundary conditions in some fashion. The simplest way
of doing this is to choose n, points {Pj} in 5,- with Ŷ Li nt = n + \ and then
satisfying the boundary conditions by collocation; i.e. by choosing {ĉ l/Li
and c to satisfy

Bi(un(P;)) = 0, j = l,2,---,n,, /=l,2,---,m. (9)
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302 Boundary Element Technology

For instance, if we have Dirichlet boundary conditions, then Bf(u) =
u — g, I = 1, 2, • • • , m where g is a given continuous function on 5", and (9)
becomes

;' = 1, 2, • 1. (10)
k=i

™_i U{c} and u is approximated byEquations (9) are then solved for
(8).

In contrast to previous work, we have found the MFS to be quite
sensitive to the inclusion of the constant term in Un> Although Bogomolny's
theoretical results suggest that a constant be included, his numerical results
indicated little effect. On the other hand, we have found that the value of c
to be quite dependent on the eccentricity of the domain. In our experiments
with elliptical domains, we have found that c\ generally increases as the
eccentricity increases.

3 COMPUTATION OF PARTICULAR SOLUTIONS

To compute particular solutions to Poisson's equation we consider the ap-
proach used in the DRM, that of approximating / in (1) as a linear combi-
nation of globally defined basis functions {fkYk=\

k=I

and then obtaining an approximate particular solution v by

k=l

(ii)

(12)

where v& satisfies
A«fc = /*. (13)

If {£*}£_! can be obtained analytically, then only the expansion coefficients
{^fc}/fc=i need be determined. The simplest way of doing this seems to be
via interpolation: that is a set of n points {/j}"__j is chosen in the domain
of / and then setting

i = l,2,---,n. (14)

Doing this gives the n equations

6=1

for {afc}£_j. If the matrix F = [fk

be solved uniquely for {&t}j!_i-
-^)=i is non-singular, then (15) can
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Boundary Element Technology 303

The question now arises as to the choice of basis functions {fk}̂ -i
and interpolation points {Pj }^. If we argue in analogy to the one-dimensional
case, then trigonometric, polynomial and piecewise polynomial functions
immediately come to mind, and all of these have been discussed in the lit-
erature [5, 8]. However, as is well-known, in one dimension naive choices of
basis functions and interpolation points, such as interpolation using mono-
mials with equally spaced points, can be disastrous [9].

In one dimension cubic splines provide a solution to some of the
problems of polynomial interpolation because they give the smoothest in-
terpolants in the sense of minimizing the "curvature" integral [9]

J —

From this one might expect that tensor products of cubic splines would be
optimal interpolants in RA Surprisingly, this is not the case [6, 7]. By a
theorem of Duchon [6], optimal interpolants in R^ are given by the thin
plate splines [6, 7]. Specifically we have the following theorem.

Theorem 1. (Duchon) Let r(f ) G C% (R% - {0}), be such that

2 2

-/«•££

2
dx<oc, (17)

and let / : R% -» R have values /(?,), z' = l,2,--,n (n > d+1) on the
noncollinear points {Pi}"-i- Then there exists a unique r interpolating to
/ at {fĵ i and minimizing 7(r) iff (f = (%,%/))

r(P) = A, ||f - f, II' log ||f - fj||4- a + 6z + c%, (18)
j=i

where

o. (19)

The functions r(P) in Theorem 1 are called thin plate splines and
are the multidimensional analogues of cubic splines. Their optimal interpo-
lating properties suggest taking

fk= \\P-Pk\\*\°g\\P-Pk\\, fc=l,2,--',n-2, /n-2 = l, /n-l=X, /„=»•
(20)

We note in (20) that the basis functions are similar to the basis
functions fk = \\P — Pk\\ + 1 commonly used in the DRM. Both of these sets
of functions are particular cases of radial basis functions [7]; i.e. functions
of the form

p̂ (P) (21)
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304 Boundary Element Technology

where yx {x > 0} —» R is continuous with y(0) > 0 and pm is a polynomial
of degree m. In contrast to some statements in the literature [8], there exists
an extensive approximation theory for these functions [7] and Duchon's
result supports the choice of rbfs as interpolants in the DRM. Moreover,
there exist estimates for the interplation error for the thin plate splines
which leads us to advocate their use in the BEM and related algorithms. For
instance it is shown in [7] that Q(h*) error can be obtained by interpolating
/ by thin plate splines on a uniform mesh.

If the thin plate splines are used to approximate /, then we can
obtain particular solutions Vk in the following way: we integrate Poisson's
equation in polar co-ordinates to get (k = 1, 2, • • •, n — 2)

= * (IIP-All), (22)

where \£ satisfies
1 a / A\b\

(23)
r dr \ dr

Successive integration of (23) gives

For k — n — 2, n — 1, n, we have

#2 -f y^ x^ ?/3
Vn-2 = - - - ,Vn-i = — , ̂ n = — • (25)

4 THE MFS FOR POISSON'S EQUATION

We now combine the results of Section 2 and 3 to give MFS algorithms for
solving Poisson's equation. If an exact particular solution is not available,
we begin by finding an approximate particular solution v by using the algo-
rithm discussed previously. Among other things, this enables us to compare
our results with existing DRMBEM algorithms with y?(r) = 1 + r.

Having obtained v define w as the solution to

,2,--,m. (26)

To solve (26) we use the MFS with n sources uniformly distributed around
a circle of radius R surrounding D. US has a smooth parameterization
S = {(a(<9),6(0)),0 < 0 < L}, then we collocate at the points
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Boundary Element Technology 305

At present these are the only examples we have examined. The
resulting approximation to (26) is denoted by w and then u is approximated

by
u — w + i). (28)

Since Aw = 0 and Au = / by construction,

A6 = AtD + u = /, (29)

a result needed in the following section.

5 SOME ERROR ANALYSIS FOR THE MFS

With the exception of Cheng's MFS convergence result for the Dirichlet
problem in R\ no general convergence analysis seems to have been given for
the MFS [4]. However, using some standard a-priori estimates for solutions
to Poisson's equation it is possible to obtain some heuristic error bounds
for u in terms of the data. For simplicity we confine our argument to the
Dirichlet problem.

For our analysis we assume that u G C*(D) 0 C°(D U S) and that
5, / and g are smooth enough so that there exists a unique solution to

At/ = /, %|s = ,7. (30)

For w € C*(D) fl C®(D U 5) we have the well-known inequality [10]

Q (31)

where c% and c^ are constants not depending on w. If we let w = u — u in
(31) then

fo (% - 6)2 dQ < d ̂  (ti - 6)2 dQ + 02 ̂  ( A% - Ail)' cfQ ^

since Aw = / and A6 = / by (29).

Now on 5, u\s = g and u\g = w\s + v\s- By construction w is
chosen to interpolate g — v on S by a linear combination of potentials. Thus
w \s = gi — vi and (u - v)\g = g - gi + vi - v 5 = g - gi - (v \s - vi \s).
Using this in the first integral in (32) gives

/ (u - u)* dQ<cJ {(g - gi) - (v - vtf dQ + cj (f - /)' dQ. (33)
JD Js JD ̂  '

Using the triangle inequality in the first integral and taking square roots
gives the LI error bound

II" - "Ho < 4 [\\9 ~ 9i\\s + II" - ̂ lUl + HI/ - /IL
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306 Boundary Element Technology

where

\\w\\o = ( I w*dQ\ and \\w\\g = \ I w'dQ\ . (35)
\«/jD / [.J S J

As can be seen, (34) gives an error bound for u in terms of approxi-
mation errors to the data (/,#) in (30). If the data are analytic, then (34)
and our arguments in Section 2 and 3 suggest that

II" -*\\D = Mo = E(n,R)+0(h*) (36)

where E(n, R) —*• 0 exponentially fast in (n, R). In this case, we expect the
error in u to be dominated by the approximation error in /.

6 NUMERICAL EXAMPLES

To validate the theory developed in Sections 2-5 we solved Poisson's equa-
tion on the ellipse ẑ /4 + y^ < 1 with / = —2, —x, —x^, 4 — x* and u\s — 0.
These problems were chosen so we could compare our results with previ-
ously published BEM results in [5, 8]. Because of lack of space we present
results only for / — — x^ in Table 1. As can be seen, they are generally al-
most an order of magnitude more accurate than those in [5, 8] and required
fewer arithmetic operations because there were no numerical integrations to
perform.

The calculations were done using 16 sources evenly spaced around
a circle of radius eight to solve equation (2). The approximate particular
solution was obtained using a thin plate spline interpolant on the 33 points
given in [5]. All numbers have been rounded to 3 decimal places.

In Table 1 the analytical solution is given by [(—50%̂  — Sy^ + 33.6)
(%2 /4 + y^ _ i) /246] [5]. The DRM results are those in [5] using 17 linear
boundary elements and {1 + ||P — Pk\\} as the basis functions to approximate
—x*. The values in the last column are those obtained in [8] using the BEM
with 17 linear elements and bicubic Hermite interpolation to approximate

Table 1. Solutions of Au = — x^ on x^/4 -f y^ < 1

y Analytical MFS DRM H-bicubic
Solution Solution Solution Solution

1,
1,
0,
0
0
0
0

.5

.2

.6

.0

.9

.3

.0

0
0
0

00
.35
.45
.45
.00
.00
.00

.260

.220

.144

.103

.240

.151

.137

.261

.220

.144

.104

.240

.151

.135

.269

.220

.135

.092

.236

.142

.127

.259

.224

.140

.097

.235

.149

.132
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Boundary Element Technology 307

CONCLUSIONS

We have shown how to extend the MFS to solve Poisson's equation without
boundary or domain discretization. Numerical results are generally superior
to those obtained by related BEMDRM methods. Although we have only
considered solving Poisson's equation in this paper, the method can be
applied to more general linear and nonlinear partial differential equations.
Work is currently in progress on these generalizations.
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