gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

Multilevel implementation of the dynamic
virtual environment

D. KoroSec, A. Holobar M. Divjak & D. Zazula

Faculty of Electrical Engineering and Computer Science
University of Maribor, Slovenia.

Abstract

Virtual environments (VEs) are nowadays often more than just static
visualizations of 3D scenes in which user can navigate its avatar. From traditional
applications in, for example, civil and machine engineering, 3D technology is
moving forward to dynamic simulations and training systems. Unfortunately -
there is still a lack of software standards that could be used to efficiently build
such systems. VRML as probably the most standard technology for description of
3D scenes can add dynamic behaviour to 3D objects, but its implementation
mechanisms, based on messaging, are rather crude. Three main levels exist: on
the bottom simple deterministic behaviour can be hard-coded; medium level
(scripting) then resolves many of the bottom level limitations; and finally, to
create a complex system, separate, asynchronous applications connected to
VRML form the third level,

In the paper we address this topic and demonstrate an example of medical
training system for neonatal intensive care. The components of this system were
created as several independent and interconnected dynamic 3D objects, whose
behaviour was implemented over one, two or all three levels. We first explain
them in details and demonstrate and clarify the benefits and drawbacks of each
level with an example,

1 Introduction

Computer generated 3D environments can only capture a small part of the total
complexity, dynamics and interactivity in the real world. Which part this is
should mainly depend on application itself, but in practice the choice of the
programming technologies may cause a significant bias. Unfortunately, no single
standard solution exists today that would include all necessary building blocks for
a complete interactive 3D application: description of 3D objects and rendering,
background physical model, multi-user support, advanced interaction and
immersion possibilities.

gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

478 Simulations in Biomedicine V

Virtual Reality Modelling Language (VRML) [1] as an open, platform-
independent standard does offer some answers, especially for visualisation and
simple animations, but beyond this one should use the VRML interfaces to
scripting and general purpose programming languages - JavaScript, Java or C++,
In systems built by using VRML and Java, the environment logic and behaviour
of the objects is, therefore, divided among three implementation levels. One level
is described in the core VRML using timer and interpolation nodes, which is
usually the simplest and most deterministic behaviour. Second level consists of
script nodes, where more complex functions can be specified. External programs
and routines, communicating to the VRML scene graph and VRML rendering
engine via External Scripting Interface (EAI) [7], add the third implementation
level of such system.

In the next section of this paper a brief overview of the VRML is given first,
Here we also present the basic amimation mechanism using timers and
interpolators, we call it Level 0. Its limitations can be resolved using scripting
(Level 1) and combining separate applications (Level 2), which is both presented
in Section 3. The architecture of our system - virtual baby application for neonatal
resuscitation training - which uses techniques from all three levels is outlined in
Section 4. Implementation of the respiration is shown as an example. In
conclusions we summarise the advantages and drawbacks of each level and give
hints on which level is appropriate for implementation of a particular system
behaviour.

2 Virtual reality modelling language

Although the VRML is now almost an acronym for virtual reality, it was
originally designed to hold static description of virtual worlds in VRML files [4].
The whole information about 3D objects and their properties is stored in a
hierarchical structure called scene graph. Entities in the scene graph are nodes
and consist of fields, With the appearance of version 2.0 (quickly turned into
current version VRMI97) [1], VRML can be used to perform simple animations
and generate dynamic responses to the external happenings. This is supported
through the message-passing mechanism, called event model, by which nodes in
the scene graph communicate with each other [2]. Each node defines the names
and types of events that may be generated (eventout) or received (eventIn).
Event paths between generators and receivers of events are called routes [3].

VRML browser, a program which interprets and presents VRMI, virtual
worlds as if experienced from a particular viewing location, is often installed as a
plug-in of a Web browser. VRML browser also provides a mechanism allowing
the user to interact with the world through special nodes in the scene graph
hierarchy called sensors. Sensors generate events in response to user interaction
with geometric objects, navigation of the user through the world, or expiration of
time. The essential receivers of these events are nodes that perform simple
animation calculations. They are called interpolators and are usually combined
with sensors or other nodes in the scene graph to make objects move. This
sensor=> interpolator=> geometry node communication is the most basic method
built into VRML standard to support animations.

gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

Simulations in Biomedicine V. 479

2.1 Level 0: VRML animation cycle

For the purpose of our multilevel classification we denote the described
mechanism Level 0. TimeSensor is its driving force: it stirs an interpolation
node which provides an effective value to control the animated node. The
example of such route is shown in Figure 1.

s E . ’ / -
TouchSenser TimeSensor Colprinterpolator i Materiy
£ L oplEESS L phiiethid

S fil @%’@@5? ’

Figure 1: Schema of a basic animation cycle example - change of colour is
triggered by clicking a touch sensor. Eventout fields are dark,
event In fields are bright grey and exposed fields are iridescent.

Simple as it is, this method has some serious drawbacks. Most of them are
functional limitations: only deterministic, periodic animations can be
implemented. Also when started, the animation can not be interrupted.
Awkwardness of this mechanism is also caused by some of the inherent VRML
limitations: routes can only be set between named nodes, which makes
anonymous communication or multicasting practically impossible. The same goes
for interaction with dynamically added nodes.

But there is another problem related to event model itself - performance
limitation. No control is possible over how often events are generated by each
TimeSensor nor different priorities can be assigned to animation cycles of
different importance. Some of the here mentioned limitations can be resolved
using advanced animation mechanisms as described in the following sections.

3 Advanced animation mechanisms

31 Level 1: Seripting (SI)

Applications often require sophisticated program logic to control various
pathways, check user input and access system resources directly. These demands
contradict the principle of simplicity and universality of the VRML standard and
are not supported in the main event model. To perform more complex,
application-specific operations, the Script node was included (Figure 2). Using
the rules of the Script Interface (SI), it can be used to implement a node with
user-defined behaviour. The Script node has two main features:

¢ it can contain an arbitrary number of fields, event Ins and eventoOuts;

¢ all received events are processed by a program, specified in the URL field.
When the Script receives an event, it calls a special method containing the
user-implemented program. The actual name of the method depends on the
programming language used. In Java, the method processEvent () [5] is
called. In Javascript, the method has the same name as the eventIn which received
an event [6]. Along with the actual value the timestamp is also received. The
events generated by the Script method have the same timestamp as the event
which triggered it. Script Interface does not limit the choice of programming
language, but most VRML browsers support only Java and Javascript.

gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

480 Simulations in Biomedicine V

'+ Seript
| mustEvaluaie
W_jg.ii.re;‘:;Outprut i
... opticnal field

e @ @

optional eventin |

Figure 2: The Script node and its fields. The URL field contains a reference
to the program code.

3.1.1 Scripting as a solution to functional limitations of Level 0

Script nodes can be used to greatly enhance the basic VRML animation
mechanism, described in Section 2. To make the animation respond to various
parameters, these parameters should be used as inputs to the Script node (as
eventlns). That way the Script program is evoked as soon as one of the
parameters is changed. By sending eventOuts it can change the state of the
animation, modify the interpolation values, etc. The eventOuts should be routed
to every node that we want to control. This way the Script node behaves as a
supervisor node for the underlying mechanisms of Level 0. We can use it to select
between different animations, to modify the length of the animation, to change
interpolation values with time, to start/stop the animation, etc.

3.1.2 Scripting as a solution to performance control

One of the greatest weaknesses of the VRML standard is incomplete definition of
the TimeSensor node. TimeSensor generates events as time passes and is a
basis for all animations in the VRML world. To achieve the best performance,
most VRML browsers generate time-related events as often as possible, and so
decrease the responsiveness of virtual world. Another weakness of the
TimeSensor node is the lack of the field for priority settings. All
TimeSensor nodes in the scene generate events with the same frequency and
there is no mechanism to slow some of them down. Most applications, however,
consist of a few detailed animations and a number of less important time-
dependant actions.

Therefore, we developed a prototype of a time-dependant node (we called it
Timer) [9], whose frequency of generated continuous events can be limited. It
has almost exactly the same program interface and behaviour as the standard
TimeSensor node (except the frequency of continuous event). An additional
field, called delay, which sets the minimum time interval (in seconds) between
two consecutive continuous time events, was added to the Timer node. Setting
the maximum frequency of each individual instance of the Timer node reduces
the CPU load and ranks the instances of the Timer node in the virtual scene by
their importance.

E';ﬁ Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

Simulations in Biomedicine V. 481

The Timer node is implemented as an instance of Script node combined
with the Java code, and can transparently be included in any VRML scene. A
Java thread is used to trigger its events, enabling quick responses to the requests
from virtual world. Unfortunately, the execution of Java byte-code in Java Virtual
Machine is still rather slow. As a consequence, our Timer nede isn’t capable of
generating events with frequencies over 100 Hz.

3.2 Level 2: Connection to other applications (EAI)

An interface was developed to enable the external environment access to the
nodes of the virtual world. It incorporates the highest level of generality and
supports implementations based on individual programming languages, as well as
implementations based on protocols. EAI allows three types of access to the
VRML scene [7, 8]:

e sending events to event In fields of named nodes inside the scene,

e reading the last value sent from the nodes inside the scene and

s getting notified when events are sent from nodes inside the scene.

The schematics of an external application communicating with the VRML
scene is depicted in Figure 3.

VEML world
(Scene graph)

Sc{ivp;a;M?

[t

FmuSonsdr

i
3

ikt

T

*atertal

Figure 3: The connection of the stand-alone external application with the VRML
world through the External Authoring Interface.

The main difference between SI and EAI is in the connection between the
scene and the code of the user program. In SI, the program code is still under the
browser control (Script programs are activated by receiving events). In EAL
the program rtuns independently from the VRML browser, which enables
asynchronous execution of user program independently of the activity in the
virtual world.

4 Complete virtual training case — neonatal intensive care

We have designed and implemented a prototype virtual environment for medical
training in neonatal resuscitation (VIDERO). The central element of this

gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

482 Simulations in Biomedicine V

environment is the dynamic virtual model (avatar) of a newborn child, built using
VRML and Java [10]. Physiological variables relevant for training were chosen to
be represented through the avatar: heart rate, respiration rate, skin colour and
activity level (such as movement and crying).

Such computer—generated representation of a human being has one major
advantage over the rubber doll, which is traditionally used in teaching neonatal
resuscitation [11]: several vital signs can be dynamically rendered by generating
their visual and audio representation. Students, working on an example case, are
now faced with more realistic challenge — instead of listening to a verbal
description of the baby’s condition they have to continually asses visual and
auditory clues from the baby itself and virtual devices around it.

In our model a teacher (mentor) remains the necessary key element: either he
directly controls all observable parameters [12] (heart rate, respiration rate, skin
colour, facial expressions and movements) of virtual baby or he predefines their
trajectories over time by so—called scenarios. Based on actions the student
chooses during training session (list of possible actions and their corresponding
parameters are again described in advance by mentor), different scenarios can be
triggered.

4.1 System architecture

VIDERQ is a distributed application [13]. The system runs on a set-up of two
connected personal computers and has an option to interface with the Polhemus
motion tracking device and a head-mounted display. It consists of a mentor’s and
student’s module that must run on two separate computers, of Replayer module
and of several servers which are responsible for appropriate exchange of control
data between the mentor’s and student’s modules, for recording and replaying the
training courses, and for the communication with tracking devices. Structure of
the VIDERQO application is schematically depicted in Figure 4.

Student Mentor
application application

Figure 4: Modular structure of Virtual Delivery Room.

gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

Simulations in Biomedicine V. 483
4.2 Example of implementation: Respiration mechanism

One of the most important and investigated vital sings in neonatal medical
treatment is the newborn’s respiration cycle. Hence, much attention was paid to
its implementation. It incorporates all three programming levels: Event model
(Level 0), SI (Level 1) and EAI (Level 3) and can, thus, serve as a good example
of how different simulation levels can interlace in VRML. The structure of the
newborn’s respiration mechanism is shown in Figure 5.

The respiration mechanism uses the standard VRML interpolators (Level 0) to
animate the movement of newbom’s chest (BreathInCoordInterp and
BreathOutCoordInterp mnodes in Figure 5), the audio clips of real newborn
breathing (BreathInAudio and BreathOutAudio nodes), and the respiration
curve on the virtual monitor (BreathInlnterpolator and
BreathOutInterpolator).

Four Timer nodes (Level 1) control the time progression of the respiration
cycle i.e. dictate the durations of the different respiration stages: breath-in
(BreathInLength), breath-out (BreathOutLength), and pauses after breath-in
(BreathTInPause) and breath-out (BreathoutPause), respectively.

The BreathLooper node is implemented using SI (Level 1) and serves as a
central control node for synchronization of the different respiration stages. Using
the EAI (Level 3) the commands from the external application (mentor’s module)
are passed to set_transition eventIn, carrying the information about the
new breathing frequency and the time in which the transition to new frequency
should complete. BreathLooper node then automatically interpolates the
durations of each respiration stage in each repetition of the cycle and dispatches
appropriate events to corresponding Timer nodes.

Similar mechanisms were used also for other vital signs. Their interpretations
and visualizations are summarized in Table 1, along with their level of
implementation.

Table 1: The interpretation and visualisations of different newborn’s vital sings.
Crosses denote the corresponding levels of implementation.

e e

Viaalsign |1 (ation, visualization
Chest movement
Sound

Giraphical curve and current breathing
Breathing | frequency value displayed on virtual momitor
Interpolation of breathing frequency between X
sucecessive respiration cycles
Control of breathing frequency over time »
Hound

Graphical curve andidirient heait i value
| displayed on virtual monitor 1
Interpolation of heart rate hetween successive #
1+ beats
Comtrol of heart rate value over time X

b4

' Hearthest

gﬁ' Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

484 Simulations in Biomedicine V

Table 1, continued

it} s < ot v
Colour of Skm and hpq turn from normal to blue and back

skin and | Interpolation of the skin and lips colour x
lips Control of the colours over time b
of the baby's head, arms and leps x
Mation, 1 of the motion infensity x
‘Control of fhe motion 1%11%1&3} over bime b %
Replaying of the real baby crying audio clips
Cry Facial mimics (lips, eves and forehead motion)

Selection of the audio clips, synchronization of X
the moans with facial mimics

“BréathinAutio” .
oo, AudioCilp ody”
“BreathinLength”) B(}dy
: ‘ . ﬂ(point |
Hrea?"i’ln Coordipters’ s
Com*d mtemﬁerpo!amr

e “Bremth in P:xcm(}

’ Th

event from
Java
applet

|
|
|

smg@mOutPaum
Ti]

“BregthOutl shgth”
i

BmathOutCoordmrerp
COOrdfnatelntemotator]

b

Figure 5: Schematic structure of the newbom’s respiration mechanism. Circles
depict different nodes with their names (cursive) and types (bold).

E';ﬁ Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

Simulations in Biomedicine V. 485

5 Conclusion

We demonstrated three levels at which dynamic behaviour of objects in virtual
environments created using VRML can be implemented. As in all programming
languages there is no single best implementation of certain behaviour, but it is
important to know properties and limitations of each particular implementation
level, as they are, based on our experience, summarised in Table 2.

Table 2: Properties of levels for implementation of dynamic behaviour in VRML.

apes i Disi e
Basic VRML mechanis; | Functional limitations
Level O | Simple and standard Inability to control browser

Supported by all browsers | performance

N e | Synchronous opeeation with respect to
Suives functional the VRML browser cole
iingitations of Leveld

, Cansespomlonly to tigpered evonis
Lavel 1 | Standard ‘ e o i

. ; % 1 Interfere oance of'the
SEATERPHY 5 . N
Supporis severd rest of the VRMI vigialisation
fanguages ‘ :
Do¢s notsuppirtexterial fiolds
Incompatibility of versions
Not supported by all browsers
Full functionalit / 3
Level 2 ¥ _ No access to unnamed nodes
Asynchronous operation | No access to metainformation on the

nodes
No access to simple fields

Finally, in terms of appropriateness for certain functionality from the
standpoint of ease of implementation and the rendering speed, the following
guidelines can be given about each level: Level 0 implements elementary
animations and deterministic periodical behaviour; Level 1 is suitable to model
reflex behaviour, more complex deterministic and pseudo random animations;
and Level 2 covers the cases, where VRML only provides visualisation, while
computation of complex models and some other system tasks (multi-user
communication, synchronisation, storage, etc.) run as separate processes.

To build complete dynamic virtual environments, as for example our
presented virtual delivery room prototype, all three levels must be skilfully
employed.

E';ﬁ Transactions on Biomedicine and Health vol 6, © 2003 WIT Press, www.witpress.com, ISSN 1743-3525

486 Simulations in Biomedicine V

References

[1] The VRML Specifications, http://www.web3d.org/ VRML2.0/FINAL/Spec.

[2] Ames, A.L., Nadeau, D.R., Moreland, J.I.. VRML sourcebook, John Wiley
& Sons, Inc, New York, 1996.

[3] Hartman, J., Wernecke, J. The VRML Handbook: Building moving worlds
on the web, Addison — Wessley publishing company, New York, 1996.

[4] Carey, R., Bell, G. The Annotated VRML 2.0 Reference Manual, Addison —
Wesley Developers Press, Berkeley, 1997.

[5] The Virtual Reality Modeling Language: Java scripting reference,
http://www.web3d.org/VRML2.0/ FINAL/spec/part1/java.html]

[6] The Virtual Reality Modeling Language: JavaScript scripting reference,
http://www.web3d.org/ VRML2.0/ FINAL/spec/part1/javascript.html

{71 Marrin, C. Proposal for a VRML 2.0 Informative Annex: External Authoring
Interface Reference, http://www.vrml.org/W orkingGroups/vrml-
eai/Externallnterface.html, November 1997.

[8] EAI design notes, http://www.vrml.org/Working Groups/vrml-
eai/impl/design.

[9] Holobar, A., Zazula, D. Improved control of events in the VRML 2.0
application. Proc. of the 6th Euromedia conference, Valencia, Spain, pp. 67-
71, 2001.

[10] Korogec, D., Holobar, A., Divjak, M., Zazula, D., Dynamic VRML for
Simulated Training in Medicine. Proc. of 15th IEEE Symposium on
Computer-based Medical Systems, Maribor, Slovenia, pp. 205 — 210, 2002.

[11] Halamek, L.P., Kaegi, D.M., Gaba, D.M., Sowb, Y.A., Smith, B.C., Smith,
B.E., Howard, S.K. Time for a new paradigm in pediatric medical
education: Teaching neonatal resuscitation in a simulated delivery room
environment. Pediatrics, pp. 106-110, 2000.

[12] Bloom, R.S., Cropley C. et al. AHA/AAP Neonatal Resuscitation Textbook,
American Heart Association, 1994,

[13] Divjak, M., Holobar, A., Prelog, I. VIDERO - virtual delivery room. Proc. of
International Conference on Trends in Communications, IEEE Region 8
Student Paper Contest, Bratislava, vol. 1, pp. LIV — LVII, 2001.

