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Abstract 

There is a rising concern for sustainability in the built environment. Therefore, 
numerous sustainable building certification and rating systems are developed 
throughout the world. However, the current methods of measuring, predicting, 
and optimising the sustainable building design have relied on a number of 
disjointed analyses to meet the discrete requirements for various building 
systems. The recent development of Building Information Modelling (BIM) 
technology allows complicated building modelling to be digitally constructed 
with precise geometry and accurate information to support various building 
project stages. Thereby, this study aims to integrate decision-making (DM) for 
sustainable building envelope design with BIM functionalities by considering the 
tropical climatic contexts in Malaysia. Several regional sustainable building 
certification systems and related literature were reviewed to identify the 
importance of evaluation and DM criteria. The findings were then compared with 
various BIM tools in terms of their applications, functions and workflows, in 
order to formulate a process-driven BIM-based DM framework (DMF) for 
sustainable building design in Malaysia. The proposed DMF will address the 
difficulties of DM in the early design development process, and will also allow 
for specific trade-off analyses of sustainability and objective-based optimisation 
using BIM. 
Keywords: GreenBIM, design process,  AEC industry, sustainable architecture, 
tropical. 
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1 Introduction 

In the past 20 years, numerous certification and rating systems are available 
throughout the world for sustainable building, including LEED in US; BREEAM 
in UK; Green Mark in Singapore; and Green Star in Australia. Each of these 
systems requires different types of performance goals to evaluate and to 
benchmark the levels of green building revolution. Green Building Index (GBI) 
[1] and GreenRE [2] have been introduced to Malaysia in 2009 and 2013 
respectively, both are sustainable building rating systems for non-residential new 
construction, residential new construction, and existing non-residential buildings. 
Some of the criteria in GBI and GreenRE actually used the benchmarks as stated 
in MS 1525 [3] such as overall thermal transfer value (OTTV) and roof thermal 
transfer value (RTTV). 
     The term ‘sustainability’ comprises a wide range of components: 
environmental quality, society well-being, and economic stability. These 
components often lead to conflict; therefore, it is very difficult to integrate these 
components into a single green rating [4]. However, the current design decision-
making (DM) for sustainable buildings much depends on a number of disjointed 
analyses, to determine whether discrete requirements are best met with various 
building systems (e.g. HVAC, plumbing, lighting) or design features (e.g. 
landscaping, renewable energy generation, parking). Although many studies 
have pointed that the best opportunities for building sustainability improvement 
occurred in the early design or pre-construction stages, in the conventional 
architecture, engineering and construction (AEC) practice, surveys had found 
that the design DM for building sustainability occurred in the later stages [5, 6]. 
     With the development of Building Information Modelling (BIM) technology, 
complex building modelling can be digitally constructed with both precise 
geometry and accurate information in order to support various project stages. 
Many researchers had stated the benefits of BIM in AEC industry such as 
accurate data environment, effective design process, accurate project cost 
estimation, time saving, and other benefits [7–11]. The additional functionality 
of BIM parametric modelling also allows conduct various analyses for design 
DM. 
     The applications of BIM for sustainable building design or GreenBIM model 
had been investigated widely recently. For instance, the data of BIM model can 
be utilised for green rating evaluation [12, 13]. BIM-based model can also be 
used for post-occupancy evaluation process [14, 15] and waste reduction of 
renovation projects [16]. Bank et al. [4] investigated the possibility of 
developing a decision-making (DM) framework for sustainable building design 
and operation by integrating BIM with System Dynamics. Kim et al. [13] aimed 
to develop Green BIM Template (GBT) for Green Building Certification Criteria 
(GBCC) in South Korea. 
     From the recent development on BIM-based sustainability or GreenBIM, it 
shows the importance of extracting data from BIM for sustainable building 
design DM. Hence, a decision-making framework (DMF) is needed to 
understand the extent and benefits of applying BIM in early stages of building 
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design. A BIM-based DMF can give the designers a well-defined workflow to 
support the DM process using BIM based on regional sustainable building 
certification systems. Thereby, this study aims to integrate DM which comprises 
sustainable building envelope design and BIM functionalities with the 
consideration on the tropical climatic contexts in Malaysia. This study focuses 
on the early design or pre-construction stages which includes conceptual and 
schematic design as well as design development stages. 
 

2 Methodology 

Design DM for sustainable building envelope design is multifaceted; it requires 
energy consumption, PMV, daylighting, initial cost, and other aspects. DM is 
affected by many design variables such as window position, window-to-wall 
ratio, shading device geometry, type of glazing, wall material and so on. 
Therefore, DM for architectural optimal sustainable design involves searching 
for a multi-criteria optimal design solution set based on various sustainability 
indicators [4, 17, 18]. In this study, a BIM-based DMF for sustainable building 
envelope design was developed after considering certain aspects such as design 
process, sustainability indicators and functionality of BIM tools. Several regional 
sustainable building certification systems and related literature were reviewed to 
identify the importance of process and evaluation criteria for sustainable DM 
building envelope design. DM process and criteria then were compared and 
matched with BIM functionality and Level of Development (LOD). The finding 
of the study has established an objective-based process-driven DM framework 
(DMF) for sustainable building envelope design. 
 

3 Development of BIM-based decision-making framework 

3.1 Definition of sustainable design decision-making criteria 

The review of several regional sustainable building certification systems and 
literature has highlighted the different DM criteria for sustainable building 
envelope design. All the criteria were then categorised according the different 
design variables: 1. Opening position, 2. Opening size, 3. Shading device,  
4. Window glazing type, 5. Wall type and material, 6. Roof geometry, 7. Roof 
opening geometry, 8. Skylight geometry, 9. Skylight glazing, 10. Roof type and 
material. Different design variables require different sustainable design DM 
criteria by responding to the local climate. For instance, the position of window 
openings shall avoid facing east-west orientations in order to minimise direct 
solar heat gain; whereas the construction of building façade and roof shall 
maximise the use of regional and sustainable materials. The DM criteria and 
related references based on the various building envelope design variables are 
summarised in Table 1. 
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Table 1:  Summary of sustainable building envelope design DM criteria. 

Design 
variable 

Sustainable design DM criteria References 

V1- 
Opening 
position 

 Minimise east-west facing opening to avoid direct sunlight 
 Maximise north-south facing opening to capture prevailing wind
 Maximise north-south facing opening to receive sufficient 

daylight 
 Provide good distribution of daylight 

[2, 19–22] 

V2- 
Opening size 

 Minimise heat gain 
 Assure each space has sufficient operable opening area (WFR) 

for ventilation 
 Provide sufficient indoor air movement and air change 
 Provide sufficient indoor illuminance 
 Minimise daylight glare 

[1, 2, 19, 20, 
22–31] 

V3- 
Shading 
device 

 Use of solar shading to shade east-west facing opening 
 Optimise shading geometry 
 Minimise OTTV1 / RETV2 

 Minimise heat gain 
 Use of shading device to control daylight quantity and quality 
 Minimise daylight glare 
 Use of PV as shading device 

[1–3, 19–21, 
24, 26, 31–45] 

V4- 
Window 
glazing type 

 Minimise OTTV1 / RETV2 

 Minimise heat gain 
 Provide sufficient indoor illuminance 
 Minimise daylight glare 

[1–3, 21, 24, 
26, 28, 31, 33, 
34, 41, 45–53] 

V5- 
Wall type 
and material 

 Minimise OTTV1 / RETV2 

 Minimise heat gain 
 Use of green wall to reduce heat gain 
 Use of regional building material 
 Use of sustainable building material 

[1–3, 28, 30, 
41, 47, 49, 50, 

51, 53–56] 

V6- 
Roof 
geometry 

 Use of roof overhang to shade east-west facing façade 
 Use of pitch angle to reduce incident solar heat gain (solar 

factor) 
 Optimise roof area for PV 

[1–3, 47, 50, 
57] 

V7- 
Roof opening 
geometry 

 Use of roof opening or solar chimney for stack ventilation 
 Provide sufficient indoor air movement and air change 

[58, 59] 

V8- 
Skylight 
geometry 

 Shade the skylight from direct sunlight 
 Orientate the skylight to face north-south orientations 
 Provide sufficient indoor illuminance 
 Provide good distribution of daylight 

[52, 60, 61] 

V9- 
Skylight 
glazing 

 Minimise RTTV3 

 Minimise heat gain 
 Provide sufficient indoor illuminance 

[1–3, 49, 52, 
62–65] 

V10- 
Roof type 
and material 

 Use of thermal insulation to reduce heat gain 
 Minimise RTTV3 

 Minimise heat gain 
 Use of regional building material 
 Use of sustainable building material 
 Use of green roof for cooling 

[1–3, 41, 51] 

OTTV1 = applicable for buildings with AC area > 1000m2 
RETV2 = applicable for residential building  
RTTV3 = applicable for roof with skylight 
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3.2 Comparison of decision-making with Level of Development 

Level of Development (LOD) in BIM had been defined by various previous 
studies in order to standardise the precision and suitability of a BIM for specific 
uses. LOD describes the steps of a BIM element to progress logically from the 
lowest level of conceptual approximation to the highest level of representational 
precision, which allows practitioners in AEC industry to articulate the content of 
a BIM at various project stages (Bedrick [66], BIMForum [67], Wood et al. 
[68]). In general, the LOD are defined as: 100 for conceptual design; 200 for 
schematic design with approximate geometry; 300 for developed design with 
precise geometry; 350 for tender and coordination; 400 for construction and 
fabrication; and 500 for as-built. 
     A BIM-based sustainable building envelope design DM needs to be process-
driven according to BIM workflow. Therefore, the sustainable building envelope 
design DM process was defined by comparing the design variables with the BIM 
LOD. This study only focuses on conceptual or schematic design and design 
development stage of a project, thus LOD 100, 200 and 300 can only be selected 
for the comparison. The match-up of the design process with the selected BIM 
LOD is presented in Table 2. 

Table 2:  Match up of design process with BIM LOD 100 to LOD 300. 

LOD Model content requirement [66–68] Design variable 

100 
Non-geometric data, symbol or line work, area, 
height, volume, zone, location, orientation or 
other generic representation. 

V1, V6, V7 

200 

Generic elements or assembly shown in three 
dimensions, with approximate quantities, size, 
shape, location, and orientation. Non-graphic 
information may also be attached to the 
elements. 

V2, V3, V8 

300 

Specific system, object or assembly in terms of 
quantity, size, shape, location, and orientation. 
Non-graphic information may also be attached 
to the elements. 

V4, V5, V9, V10 

3.3 Formulation of BIM-based process-driven DMF 

Based on the sustainable building envelope design DM criteria and the match-up 
with BIM LOD, a BIM-based process-driven DM framework (DMF) for 
sustainable building envelope design was formulated. Table 3 represents the 
BIM-based DMF for building façade and roof design according to schematic or 
conceptual design (LOD 100 and 200) and design development (LOD 300) 
stages. 
     Objective functions were determined for every design variables based on the 
DM criteria as defined in Table 1. For instance, to minimise the percentage of 
east-west facing window areas over total east-west facing façade areas is one of  

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 149, © 2015 WIT Press

Building Information Modelling (BIM) in Design, Construction and Operations  535



Table 3:  Integrated BIM and objective-based process-driven decision-making 
framework for sustainable building envelope design in Malaysia. 

Design 

Variable
Strategy Objective Function

Decision‐

making
Tool

Design 

Variable
Strategy Objective Function

Decision‐

making
Tool

Window size

[WWR]

% of E‐W facing window areas 

over total E‐W facing façade 

areas

The lower 

the better
Calculation

Glazing

[VT, U‐value, 

SC]

OTTV (applicable for building 

with AC area > 1000m²)
≤ 50 W/m² Calculation

Window 

position

% of E‐W facing window areas 

with sunshading devices over 

total E‐W facing façade areas

The higher 

the better
Calculation

Wall 

material

[U‐value, 

solar 

absorptivity]

RETV (applicable for 

residential building)
≤ 25 W/m² Calculation

Shading 

device 

geometry

SC of Shading Device
The higher 

the better

Refer to 

Guidelines

Shading 

Device SC

Building cooling load (if 

applicable)

The lower 

the better
Calculation

Type of Wall

% of spaces with window 

opening facing N‐S directions 

for cross ventilation

The higher 

the better
Calculation Indoor wind velocity 0.5 ‐ 1.0 m/s

CFD 

Simulation

% of spaces with WFR ≥ 10% 
The higher 

the better
Calculation Indoor air change rate

0.35 ACH 

and ≥ 7.5 L/S

CFD 

Simulation

Indoor air temperature 22.5 ‐ 28.5 °C
Thermal 

Simulation

Predicted Mean Vote (PMV) 0
CFD 

Simulation

% of N‐S facing window areas 

over total N‐S facing façade 

areas

The higher 

the better
Calculation

% of the NLA with DF 1.0 – 

3.5%

The higher 

the better

Daylight 

Simulation

% of the use of light shelf over 

other shading devices

The higher 

the better
Calculation

Daylight uniformity ratio 

(min/avg)
≥ 0.5

Daylight 

Simulation

Daylight Glare Index
Refer to 

Index

Daylight 

Simulation

% of green wall area over 

total wall area (if applicable)

The higher 

the better
Calculation Building Energy Index (BEI)

The lower 

the better

Energy 

Simulation

% of solar shading device area 

optimsed for PV (if applicable)

The higher 

the better

Solar 

Simulation

Renewable Energy production 

(PV; if applicable)

The higher 

the better

Energy 

Simulation

% of regional building 

materials over total project's 

material (based on cost)

The higher 

the better
Calculation

% of sustainable building 

materials over total project's 

material (based on cost)

The higher 

the better
Calculation

Construction cost
The lower 

the better
Calculation

Roof type

% of E‐W facing façade areas 

shaded by roof over total E‐W 

facing façade areas

The higher 

the better

Solar 

Simulation

Roof 

material

[U‐value]

% of roof area with U‐value ≤ 

0.4 W/m²k (light weight) or ≤ 

0.6 W/m²k (heavy weight) 

over total roof area

The higher 

the better
Calculation

Roof 

geometry

% of indirect (shaded) skylight 

area over total skylight area 

(if applicable)

The higher 

the better
Calculation

Skylight 

Glazing

[VT, U‐value, 

SC]

RTTV (applicable for roof with 

skylight)
≤ 25 W/m² Calculation

Opening 

geometry
Solar Factor (SF) of the roof

The lower 

the better

Refer to 

Guidelines
Roof SF

Building cooling load (if 

applicable)

The lower 

the better
Calculation

Skylight 

geometry

% of spaces with roof opening 

/ solar chimney for stack 

ventilation (if applicable)

The higher 

the better
Calculation Indoor wind velocity 0.5 ‐ 1.0 m/s

CFD 

Simulation

Indoor air change rate
0.35 ACH 

and ≥ 7.5 L/S

CFD 

Simulation

Indoor air temperature 22.5 ‐ 28.5 °C
Thermal 

Simulation

Predicted Mean Vote (PMV) 0
CFD 

Simulation

% of N‐S facing skylight areas 

over total skylight areas

The higher 

the better
Calculation

% of the NLA with DF 1.0 – 

3.5%

The higher 

the better

Daylight 

Simulation

Daylight uniformity ratio 

(min/avg)
≥ 0.5

Daylight 

Simulation

% of green roof area over 

total roof area (if applicable)

The higher 

the better
Calculation Building Energy Index (BEI)

The lower 

the better

Energy 

Simulation

% of roof area optimsed for 

PV (if applicable)

The higher 

the better
Calculation

Renewable Energy production 

(PV; if applicable)

The higher 

the better

Energy 

Simulation

% of regional building 

materials over total project's 

material (based on cost)

The higher 

the better
Calculation

% of sustainable building 

materials over total project's 

material (based on cost)

The higher 

the better
Calculation

Construction cost
The lower 

the better
Calculation

Design 

Element 

Category

Project Stage

Schematic / Conceptual Design [LOD 100, 200] Design Development [LOD 300]

Roof

Solar 

Shading
Thermal

Natural 

Ventilation

Natural 

Ventilation

Dayligting Dayligting

Other Other

Façade

Solar 

Shading
Thermal

Natural 

Ventilation

Natural 

Ventilation

Dayligting Dayligting

Other Other
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the objective functions to avoid direct solar radiation heat gain in the tropics. 
Besides, related BIM functionalities or tools for every DM were determined 
based on the review of various BIM software such as Autodesk Revit, Integrated 
Environmental Solutions <Virtual Environment> (IES <VE>), Autodesk Ecotect 
Analysis, Design Builder and so on. 

4 Conclusion 

This study integrates DM for sustainable building envelope design and BIM 
functionalities with special reference to the tropical climatic contexts in 
Malaysia. Several regional sustainable building certification systems and related 
literature were reviewed to determine the importance of DM criteria. The 
objective-based DMF was defined based on BIM LOD and relevant BIM 
functionalities. It addresses the difficulties of DM in early design process, and 
allows for specific sustainability trade-off analyses and optimisation to be 
conducted using BIM. This study can be further developed as a BIM-based DM 
and optimisation tool. 
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