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Abstract 

The proposed implementations are based on a consistent development of the 
conventional, collocation boundary element method (BEM) – with concepts taken 
from the variationally-based hybrid BEM – for large-scale 2D and 3D problems 
of potential and elasticity. The formulation is especially advantageous for 
problems of complicated topology or requiring complicated fundamental 
solutions. This paper, which is the sequel of a first paper presented at the PACAM 
2014 Conference in Santiago, Chile, proposes a scheme for expansions of a 
generic fundamental solution about hierarchical levels of source and field poles. 
This makes the fast multipole technique directly applicable to different kinds of 
potential and elasticity problems with generally curved boundaries. The basic 
concept of the FMM, with the expansion of the fundamental solution about 
successive layers of source and field poles, is described in a compact algorithm 
that is more straightforward to lay out and seems to be more efficient than the ones 
available in the technical literature. The hierarchical tree of poles is built upon a 
topological concept of superelements inside superelements. The formulation is 
initially assessed and validated in terms of a simple 2D potential problem. Since 
iterative solvers are not required in this first step of numerical simulations, an 
isolated efficiency assessment of the implemented fast multipole technique is 
possible.  
Keywords: hybrid boundary elements, fast multipole method, variational methods. 
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1 Introduction 

The fast multipole method (FMM), as developed by Greengard and Rokhlin in 
1987 [1], was elected one of the top ten algorithms of the 20th century [2]. 
Although it was initially conceived for particle simulation problems involving 
coulombic and gravitational fields, it also turned out to be efficient in the solution 
of boundary integral equations [3]. The FMM, combined with an iterative solver 
such as the GMRES, can speed up the complete solution time of a problem with 
N unknowns from order 2( )O N  to ( log )O N N  – or even ( )O N  [4] – while 
requiring computer storage that is only a small fraction of what would be allocated 
for a different numerical method N logN. 
     Liu [4] presents a thorough description of the FMM as applied to different types 
of BEM problems. A short review of the method is given by Liu et al. [5], a 
comprehensive review is given by Nishimura [3] and a tutorial has been prepared 
by Liu and Nishimura [6].  
     The present research work is part of the Ph.D and M.Sc. works of the two first 
authors [7, 8], and is mainly concerned with the application of the FMM to 
problems with generally curved boundaries, in a framework that is almost 
completely independent from the underlying fundamental solution. Moreover, 
some advantageous features of the hybrid BEM, which has a variational basis, are 
also explored. Not least, the basic concept of the FMM, with the expansion of the 
fundamental solution about successive layers of source and field poles, is 
described in a compact algorithm that is more straightforward to lay out and 
promises to be more efficient than the ones available in the technical literature [9]. 
Owing to space restrictions only the basic aspects of the proposed implementations 
[8] are described in the present paper, with a more extensive manuscript being 
prepared for publication in the near future. 

2 Proposed FM algorithm for a general, complex function 

The following basic definitions are used in the present developments: 
 0z z  = difference between the source point 0z  and the field point z . 

 cz  = point about which the fundamental solution will be expanded for the 

field point z . Expansions about successively farther poles kc
z , 1,2,... ck n  

(where, by definition 0 cc
z z ) are also undertaken. 

 Lz  = point about which the fundamental solution will be expanded for the 

source point 0z . Expansions about successively farther poles lL
z , 1,2,... Ll n  

(where, by definition 0 LL
z z ) are also undertaken. 

A generic fundamental solution for 2D problems can be expanded as [7–9] 
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for truncation order given by  1 1

0 0 0max ( ) ( ) , ( ) ( )n nk l

n n

c L
z z z z z z z z

 
     

and with the arrays of functions ( )P z  and ( )Q z  defined as 

 2 3 1( ) [1 ]nP z z z z z    (2) 

 2 2 3 3 1 1( ) [ ( ) ( ) ( ) ( ) ( ) ]n nQ z f z f z z f z z f z z f z z          . (3) 

In general, the higher derivatives of the fundamental solution tend rapidly to zero 
when evaluated for large arguments. 
     Equation (1) is the starting point for a procedure that leads to a computationally 
fast and economical evaluation of a given fundamental solution 0( )f z z  for a 
very large number of source points 0z  and of field points z  by means of 

a sufficiently approximate expression. As shown, 0( )f z z  is expanded in terms 

of successive arrays of source poles lL
z  as well as field poles kc

z . The indicated 

poles lL
z  and kc

z  are representative of arrays of poles corresponding to 

hierarchical expansion levels l  and k . The expansion ends up with a series of 
products of binomials ( )nki c

P z z  and 0( )nli L
P z z , which are independent from 

the complexity of the function 0( )f z z , multiplied by functions ( )n nl ki L c
Q z z  

that are given as ( )n nl kL c
f z z  and its 2n  first derivatives, for 1n   terms of the 

expansion indicated in eqn (1). The definition of the functions ( )iP z  and ( )iQ z  

follows closely the definitions (3.12) of I  and O  by Liu [4], although without 
the factorials that are present there. Observe the mnemonic appeal of P  (for 
polynomials, actually binomials) and Q  (for quotients, as in the case of the 

expansion of the simplest fundamental solution conceivable [7–9]). Although 
these latter functions may be computationally intensive to evaluate, they are only 
needed for the array of poles represented by lL

z  multiplied by the array of poles 

represented by kc
z . Then, the evaluation of ( )n nl ki L c

Q z z  ends up, depending on 

the numerical implementation, orders of magnitude less intensive than the direct 
evaluation of 0( )f z z  for all source and field points – the basis of the fast 

multipole method.  

2.1 Expansion of ( ) ki c
P z z  and 0( )nlj L

P z z  about successive poles 

In eqn (1), the superscripts kn  and ln  are the highest levels of field and source 

poles used in a given expansion. The binomials ( )li c
P z z  defined in eqn (2) can 

be expressed for a lower-level pole 1lc
z   exactly as 

 1 1, 1 1
1

( ) ( ) ( )l l l l

i

i j i j j i jc c c c
j

P z z C P z z P z z    


    , (4) 
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where 1ijC  , if 1i   or 1j  , and, otherwise, 1, , 1ij i j i jC C C   . In the above 

equation, 11 ( )l li j c c
P z z   , for the argument referring to the difference of poles in 

two consecutive levels, is defined as in eqn (2). On the other hand, 1( )lj c
P z z   

is recursively evaluated according to eqn (4) until the lowest level  0j c
P z z  is 

obtained. With this recursive approach, the binomials ( )nki c
P z z  in eqn (1) – and, 

similarly, 0( )nlj L
P z z  – end up expressed in terms of arguments given as 

differences of poles in two consecutive levels. 

3 Numerical implementation 

In elastostatics, the double-layer potential matrix H  and the single-layer potential 
matrix G  of the conventional boundary element method are given for the 
compatibility equation  

 Hd Gt  (5) 

(body forces not considered, for simplicity) of the nodal displacements d  and the 
boundary nodal traction attributes t  in terms of the boundary integrals [10] 

 0 0( ) ( ) ( )d ( ), ( ) ( )d ( ),sf kis k if s is iH z z z u z z G u z z t z z  

 
         (6) 

where 0( )jis z z    and 0( )isu z z   are the stress and displacement (Kelvin’s) 

fundamental solutions of the elastic problem – which have global support – and 
( )z  is the integration boundary. The subscript s refers to a given source node (at 

which the unit point force of the singular fundamental solution is applied) and the 
subscripts f (which stands for field) and   (also a field reference) indicate the 
nodes to which the displacement-interpolation function ( ( ))ifu z   and the traction-

interpolation function ( ( ))it z   are referred. In the above equation and in the 

following, repeated indices mean summation. ( )k z  are the Cartesian components 

of the unity outward vector to ( )z  and ( )ifu z  formally comes from the piecewise 

(with local support) interpolation of displacements ( )iu z  along the boundary: 

( ) ( )i if fu z u z d , where fd  are the nodal displacements. In an usual isoparametric 

representation, displacement and geometry are represented identically for each one 
of their Cartesian components, so that ( ) ( ( ))if ifu z u z   are actually replaced with 

shape functions ( )kN  , for a given boundary segment, with (0,1)   or 

( 1,1)   , depending on the preferred parametric representation. For 0z z , 

strong and weak singularities must be taken care of in the evaluation of H  and 
.G  However, this issue can be disregarded in the present developments, which are 

actually only concerned with what occurs when z  and 0z  are very far from each 

other. The Jacobian used in the definition of ( )j z  cancels out with the Jacobian 
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of d ( ) ( ) dz J z   , in terms of the parametric variable  . Then, expanding 

0( )jis z z    according to eqn (1) ends up with the evaluation of a polynomial 

integral corresponding to the first of eqns (6). For the single-layer potential matrix 
G , it is proposed that the usual interpolation polynomials it   of traction forces in 

eqn (6) be replaced with 
(at )i it t J J   , where 

(at )
J   is the value of the 

Jacobian at the point characterized by the subscript   [11, 12]. Nothing changes 
formally in the developments of the BEM, except that the numerical integration of 
the matrix G  becomes much easier and actually more consistent as compared to 

proposed implementations given in the technical literature [12]. In fact, J  cancels 

out in the product dit   in eqn (6) for it   defined as suggested, and the integrand 

of G , in the frame of a fast multipole implementation, also becomes a polynomial, 
independently from the assumed kernel isu . In a practical implementation, the 

functions ( ( ))it z   are replaced with the same shape functions ( )kN   used to 

represent displacements, although the context differs conceptually, as G , among 
other features, is in general a rectangular matrix (   in general spans a larger 
number of nodes than f). 
     As proposed, let ( )k kz N z  be the complex geometric representation of a 

boundary segment, for a 2D implementation, expressed in terms of the nodal 
points kz  and the shape functions ( )kN  , which are also used to interpolate 

displacements as well as traction forces, as described above. Then, the only 
integrations that need to be carried out for a given boundary segment seg  in the 

evaluation of the matrices of eqn (6) in the framework of the fast multipole 
developments represented by eqn (1) are for terms of H  and G  defined as 
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   
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0

1

0
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ji j c i j k k c i
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    

   





     

    

 

 




 (7) 

where, recalling, repeated indices mean summation, in this case covering all shape 
functions ( )kN   of a boundary segment representation, and a prime ( )  means 

derivative with respect to  . Since the Jacobian inherent to d  in the above 

integrals cancels out, the indicated interval (0,1)   is actually irrelevant. In the 

first row of the above equation, the term ( )l lN z  comes from the complex 

representation of ( )k z  along the boundary segment. The subscript j refers to the 

number of terms in the adopted expansion of eqn (4), whereas i refers to each of 
the boundary element nodes. In the present implementation for 2D problems [8], 
either linear, quadratic or cubic boundary elements may be represented. Constant 
elements are considered in a separate implementation. The main feature of the 
proposed implementation of the FMM is that the arrays jiH  and jiG  given above 
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become ultimately expressed as polynomials of the differences of the nodal 
coordinates of the boundary segment to the immediate pole, 

 ,  with  1 1i i c ez z i o     , (8) 

where 1,2,3eo   for linear, quadratic or cubic boundary elements. As an 

illustration for quadratic elements (3 nodes), 

 
1 1

1 1 1 1
1 2 3 1 2 3

1 1 1 1

, ,
j jk k

j k k l l j k k l l
ji ijkl ji ijkl

k l k l

H A G B
 

       

   

          (9) 

where the polynomial coefficients ijklA  and ijklB  can be previously evaluated for 

each node i and each series term j they refer to [7–9] and stored. However, a 
simpler procedure seems to be the direct storage of the polynomial expressions of 
eqn (9), as already implemented in a C++ code [8]. 
     The expression of the array ( )Q z  in eqn (3) is given in the technical literature 

for the most common fundamental solutions [4] and need not be reproduced here. 
However, as an illustration, the Westergaard stress function for a rotated, elliptic 
semicrack [13] may be developed as 

2 2 3
2

2 2 2

1 1 1 3 (5 2)
( ) 1 (1 )

2 2 2 1 (1 )

Z F Z ZF Z Z
Q Z Z F FZ

Z Z Z

 

    

        
, (10) 

where   2 2ln 1 1 1F Z Z Z      and 1eZ z a   for the semicrack 

length a and inclination  . (Recall that jiH  and jiG  remain defined as above.) 

4 The expedite boundary element method 

The expedite BEM [11] makes use of some features borrowed from both the 
variationally based hybrid BEM and the conventional BEM in order to arrive at a 
simplified formulation. This method basically relies on the equations  

 
T

,



 





H p p

U p d
 (11) 

for generally mixed boundary conditions in terms of nodal displacements d  and 
equivalent forces p , where H  is the same double-layer potential matrix of eqn (6) 

and U  is the matrix of nodal-displacement fundamental solutions of the problem 
that is being analyzed. Once the vector of internal force parameters p  is solved 

from eqn (11), displacements and stresses at internal points of the elastic body can 
be directly evaluated with no need of resorting to a boundary integral equation 
(Somigliana’s identity), as in the conventional BEM. 
     In a FMM implementation, which is always embedded in the algorithm of the 
chosen iterative solver, such as the GMRES [4], the matrix products T H p  and 

 U p  are evaluated according to the features briefly outlined in Section 3 for the 

52  Boundary Elements and Other Mesh Reduction Methods XXXVIII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 61, © 2015 WIT Press



conventional BEM. The FMM evaluation of  U p  is in part simplified, since no 

integration is required, but in part involves some additional computational effort, 
as the elements of  U p  for coinciding source and field points are in principle 

undetermined and must be obtained separately [11]. Owing to space restrictions, 
this expedite formulation is no longer addressed in this paper. 

5 A unified algorithm for hierarchical mesh refinement 

Figure 1 shows the schemes of three different elements considered in the present 
algorithm, as taken out of a general 2D mesh corresponding to a given level of 
refinement. The algorithm is also implemented for constant elements. A 
corresponding algorithm has also been implemented for 3D problems [14]. 

 

Figure 1: Schemes for splitting a general element into two sub-elements. 

     The input data for the hierarchical mesh refinement are:  
 eo   = either 1, 2 or 3, which defines the element type ( et  = 2, 3 or 4). 

 nee : Initial number of elements of the initial level.  
 nne : Number of nodes of the initial level.  
 nv : Number of additional levels of mesh refinement: ( 1nv  , for example, 

indicates that the structure will be refined once). 
 Table  Coord , with nee  node coordinate entries in the format  ,x y , 

which are the initial nodes of the mesh structure to be refined. This table is 
successively expanded, as new nodes are added during the mesh refinement. 

 Table   Inc k , where 1k   refers to the initial, first level local-to-global 

nodal incidence of the input mesh and the second entry are nee  arrays, each 

one with et  global node numbers of the elements. Arrays   Inc k , for 

2... 1k nv  , will be generated as a result of the mesh refinement.  
The output data are a generalization of the input data, which now refer to 1nv   
levels of refinement: 
  1... 1nel k nv  Number of elements at each one of the 1nv   levels. 

  1... 1nnl k nv  Number of nodes at each one of the 1nv   levels. 

 Table  Coord with [ 1]nnl nv   node coordinate entries, which correspond 

to the input values plus the coordinates of the generated nodes. 

b) Quadratic element ( =3, =2)e et o


3

1 54 2

c) Cubic element ( =4, =3)e et o


4

1 5 32 6
7 21 3

a) Linear element ( =2, =1)e et o
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 A table   1... 1Inc k nv  with 1nv   levels of arrays of local-to-global 

node incidences. The second entry are  1... 1nel k nv   arrays, each one 

with et  global node numbers of the elements. 

The algorithm, which is not shown in the present short paper, generates 1nv   
levels of mesh refinement, including the initial one, which is referred to as level 
1. The number of elements on any level is two times the number of elements of 
the preceding level. However, the number of nodes is not known in advance and 
is evaluated inside the procedure. 

6 A unified algorithm for pole expansions 

In the conventional BEM, as given in eqn (5), the fundamental solutions 

0( )jis z z    and 0( )isu z z   shown in eqn (6), which have global support, can in 

principle be expanded according to eqns (1) and (4) about arbitrary (but feasible, 
depending on the mesh discretization) numbers of source poles lL

z  as well as of 

field poles kc
z . In the proposed FMM algorithm, a pole expansion is combined 

with the mesh refinement introduced (but not detailed) in the previous section, in 
such a way that the element (be it linear, quadratic or cubic) dictates the expansion. 
The scheme is applicable to constant elements, although in a separate, simpler, 
code, and this is shown in Fig. 2 to illustrate that a pole expansion can be 
undertaken either at each mesh split (a), at every two mesh splits (b), or at every 
four mesh splits (c) and so on, generating in the illustration either two, four or 
eight children poles. 

 

Figure 2: For constant elements, schematic pole expansions using numbers of 
children poles cn  2, 4 or 8. 
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     The complete code combines the algorithm of Section 5 with the compact, self-
recurring expansions of eqns (1) and (4) and is too convoluted to be shown here 
[8]. Given an initial, rough, mesh configuration, as illustrated in Fig. 3, field as 
well as source pole expansions can be undertaken along with the process of dyadic 
refinement of the mesh, as illustrated in Fig. 1, so that, for known values of d  and 
t  in eqn (5), line multiplications (for instance, the multiplication iH d  of a given 

line i of matrix H ) are carried out in a faster way that requires usually only 
log( )N  instead of N operations, where N is the vector dimension of d . Basic 

entries of the developed FMM algorithm are, for a given mesh and a given 
boundary element type, the numbers of field and source poles as well as the 
numbers of children poles to be used at each expansion, according to Fig. 2.  
     The code developed so far by the authors is still a long way from being 
considered an accomplished work. Our goal is to rethink and carefully assess every 
step towards the development of a complete FMM procedure applicable to 
generally curved elements and for general underlying fundamental solutions.  
     The complete analysis of a problem in the frame of a FMM procedure 
presupposes the implementation of a direct solver (GMRES, for instance) and the 
use of a robust preconditioner. In order to efficiently assess the performance of the 
proposed FMM algorithm, the complete solution of a problem has been postponed 
to our last step of developments (when most possibly a well-proven solver – such 
as given by Liu [4] – will be adopted). Moreover, the geometric distance between 
source and field points is at the moment replaced by the topological distance 
obtained in the mesh refinement introduced in Section 5 and used as illustrated in 
Fig. 2. This is not correct for domains that are too irregular. There is already a 
work in progress to insert a problem’s domain in a mesh of hierarchical squares, 
making use of developments done for 3D problems [14]. This concept is not far 
from the developments of the technical literature [4], only that we work with 
Boolean algebra rather than with geometric distances to evaluate how far two poles 
are from each other.  
     Our initial assessments have shown that, for the solution of eqn (5), the 
expansion of the source poles does not contribute to the efficiency of the proposed 
FMM algorithm [8]. As a result, the following numerical assessments only 
consider expansion of the field poles. 

7 A basic assessment for constant elements 

Although the proposed algorithms are for general curved elements, the simplicity 
of the constant element enables the assessment of the basic features of the 
algorithms introduced in Sections 3, 5 and 6. The problem to be considered is the 
simplest case of linear potential in a square domain, whose edges are progressively 
discretized with up to 202 1,048,576  constant elements, as indicated in the 
horizontal axes of both graphs of Fig. 3. On the left of this figure is plotted the 
execution time for the evaluation of eqn (5) for the analytical values of potentials 
d  and normal gradients t , as implemented in a C++ code and running on a desktop 
computer. For the sake of comparison, the execution time required for evaluating 
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eqn (5) in the frame of the conventional BEM is plotted and shown to be 
proportional to 2N . The remaining plots on the left give the execution time of 
eqn (5) for the field poles successively expanded with number of children 2cn   

(first illustration of Fig. 2) and the number n of terms in the series of eqn (1) 
varying from 5 to 13. The results are in all cases quite the same and shown to be 
proportional to logN N . The graph on the right of Fig. 3 shows the Euclidean 

error norm   Hd Gt Gt for evaluations carried out combining different 

2,4,8cn   (Fig. 2) and different n, also comparing with results of the CBEM. The 

accuracy tends to increase with cn  mainly because the number of adjacent 

elements to a given element – for which no series expansion is carried out – also 
increases with cn . Although the accuracy always increases with n, there is also 

always a threshold for the mesh refinement. 

 
 

Figure 3: Execution time for the evaluation of eqn (5) for a linear potential 
problem over a square, and accuracy results for different numbers of 
children poles and expansion terms. 

8 Some results for curved elements 

Figure 4 shows some results for curved elements, which, although preliminary and 
of a rather academic nature [8], already give an idea of the capability of the 
algorithms that are being implemented. The deformed quadrilateral on the left is 
built up with eight quadratic macroelements, which will undergo successive 
splitting (always keeping the original geometry) up to 8,192 quadratic, curved 
elements corresponding to 16,384 degrees of freedom for a potential problem 
analysis. This irregularly-shaped domain is submitted to a potential field 2 2x y , 

with corresponding nodal potentials d  and normal gradients t  evaluated for the 
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numerical analysis using eqn (5) in terms of FMM expansions. Owing to the 
polynomial characteristics of the applied potential together with the large domain 
size and the irregular boundary, the proposed problem poses a good challenge for 
the numerical simulation. A convergence analysis using the same Euclidean norm 
of the previous example is shown on the right for three different numbers of 
children poles and five different numbers of expansion terms. Results with the 
conventional BEM are also shown, for comparison. The convergence pattern is 
the same of the previous example, although not as regular. Moreover, although 
both discretization and expansion errors have shown to be small from the very 
beginning, there is also an accuracy threshold indicating that it is not worth 
refining the mesh further. The execution time was much larger than in the case of 
constant elements, although the achieved accuracy is also incomparably larger.  
 

 

Figure 4: Deformed quadrilateral domain for a study with quadrilateral 
elements and accuracy results for different numbers of children poles 
and expansion terms. 

9 Concluding remarks 

Owing to space restrictions, only the basic features of the proposed developments 
could be presented. They are the compact expression of the expansion of a general 
fundamental solution about successive levels of source and field poles, as given in 
eqn (1), and the pre-integrations represented in eqn (7) and in part illustrated in 
eqn (9) for quadratic elements considered in the frame of a consistent BEM 
formulation [12]. The still preliminary examples of high-order, curved elements 
attest the possibilities of analysis that are being achieved. The combination with 
the expedite BEM in order to further accelerate the whole computational process 
and the use of a mesh with hierarchical squares [14] to evaluate pole distances in 
terms of Boolean algebra are some of the implementations in progress. There are 
some conceptual differences between the conventional and the expedite BEM, as 
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for instance the fact that the matrix H  is used in eqn (5) whereas its transpose 
appears in eqn (11), which lead to implementation peculiarities still to be explored. 
     The proposed FMM must be ultimately inserted into an iterative solver. This is 
not the authors’ concern at the moment, since the use of a GMRES solver, for 
instance, together with the identification of the best pre-conditioner, seems to be 
well established in the technical literature [4]. Thus, the proposed systematic 
assessment takes apart the issues related to a plain FMM procedure from the issues 
related to an iterative solver particularly with respect to execution time and may 
lead to a more efficient codification of the introduced algorithms.  
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