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Abstract

In this paper, a contour integral method called the block Sakurai–Sugiura (SS)
method is implemented to solve eigenvalue problems governed by the Helmholtz
equation and formulated through the boundary element method. In the SS method,
the nonlinear eigenvalue problem is converted into a standard linear eigenvalue
problem, and eigenvalues whose multiplicity is larger than one can also be
extracted by using the block version of the SS method. In order to solve the
boundary element linear equations with multiple right-hand sides efficiently, a
block IDR(s) solver and an adaptive cross approximation are employed to improve
the overall computational efficiency. Numerical examples are given to demonstrate
the accuracy and effectiveness of the proposed method.
Keywords: eigenvalue analysis, contour integral, boundary element method,
adaptive cross approximation, block IDR(s).

1 Introduction

The analysis of acoustic behavior of structures is usually very important. Besides
acoustic radiation and scattering analyses, the eigenvalue analysis is also a very
significant issue in engineering applications, for instance, in the vibration analysis
of mechanical structures, such as automobiles and aircraft. As it is difficult to
obtain analytical solutions for many engineering problems, numerical methods
including the finite element method (FEM) and boundary element method (BEM)
have become very powerful tools.
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Because of its high accuracy, reduction of dimensionality and superiority in
solving infinite or semi-infinite wave propagation problems, the BEM has been
widely applied for solving acoustic problems. However, the boundary element
discretization leads to an asymmetric and dense coefficient matrix. As for the
conventional BEM (CBEM), both the setting up and storage requirements of the
matrix are of O(n2), where n denotes the number of degrees of freedom (DOF).
Also, direct solvers require O(n3) operations while iterative solvers O(n2).
The high solution cost had constrained the extensive use of the BEM in large-
scale engineering applications for several decades. Moreover, as the coefficient
matrix involves the wave number implicitly, the original eigenvalue problem for
the Helmholtz equation becomes a nonlinear eigenvalue problem (NEP) when
formulated by the BEM.

To tackle the difficulty of high solution cost, a number of techniques have been
proposed. The fast multipole method (FMM) [1] is a very effective technique
which improves the BEM efficiency [2–5]. However, the main disadvantage
of the FMM is that the knowledge of the kernel expansion is required and
the computational procedure is modified quite considerably in comparison with
a CBEM code. A powerful alternative to the FMM is the adaptive cross
approximation (ACA) [6]. The basic idea of the ACA is to divide the whole
matrix into two rank (low- and full-rank) blocks, and the solution of linear system
of equations is accelerated by calculating only a few entries of the matrix. In
order to solve the NEP formulated by the BEM, contour integral methods have
emerged. In this paper, a contour integral method called the block Sakurai–Sugiura
(SS) method [7] is adopted, which can extract eigenvalues inside a given contour
while preserving their multiplicity. In order to solve the boundary element linear
equations with multiple right-hand sides efficiently, a block IDR(s) solver [8] and
an ACA approach are employed to improve the overall computational efficiency.

2 Boundary element formulations

The Helmholtz equation which is the governing equation in steady-state linear
acoustics can be reformulated into a boundary integral equation (BIE) defined on
the boundary Γ as follows:

c(x)p(x) +

∫
Γ

q∗(x, y)p(y) dΓ(y) =
∫
Γ

p∗(x, y)q(y) dΓ(y) + pi(x), (1)

where c(x) is 1/2 if Γ is smooth around the source point x, p(x) is the sound
pressure, pi(x) is the incident wave, q(y) and q∗(x, y) are the normal derivatives
of p(y) and p∗(x, y), and y is the field point. The fundamental solution p∗(x, y) is
given as

p∗(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

i

4
H

(1)
0 (kr), for 2D problems,

eikr

4πr
, for 3D problems,

(2)
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where i is the imaginary unit, k the wave number, r = |y−x|, and H
(1)
0 the Hankel

function of the first kind. The boundary conditions are given as

p(x) = p̄(x), on Γp, (3)

q(x) = iρωv̄(x), on Γq, (4)

p(x) = zv(x), on Γz, (5)

where ρ is the medium density, ω the angular frequency, v(x) the normal velocity,
z the acoustic impedance. The quantities with overbars indicate given values on
the boundary (Γ = Γp + Γq + Γz).

Discretizing Γ using N (e.g., piecewise constant) surface elements leads to the
following equation (e.g., for acoustic radiation problems):

1

2
pi +

N∑
j=1

Hijpj =

N∑
j=1

Gijqj , (6)

where
Hij =

∫
Γj

q∗(x, y) dΓ(y), (7)

Gij =

∫
Γj

p∗(x, y) dΓ(y). (8)

In Eqs. (7) and (8), Γj represents the piecewise constant element j. Collecting
Eq. (6) for all boundary source points and expressing them in matrix form yields
the following linear algebraic equations:

Hp = Gq. (9)

Equation (9) can be rearranged into the following form by applying the
boundary conditions:

Ax = y, (10)

where A is the coefficient matrix which is asymmetric and fully populated, x is the
vector containing the unknown boundary pressures and fluxes, and y is obtained
by multiplying the given boundary conditions by the corresponding columns of the
H and G matrices. Eq. (10) is solved, all the unknown boundary values can then
be obtained. Once this has been done, one can calculate the sound pressure at any
internal point by using the discretized form of Eq. (1) with c(x) = 1.

It is known that the BEM based on Eq. (1) fails to yield unique solutions
for exterior acoustic problems at the eigenfrequencies of the associated interior
problems [9]. The Burton–Miller method [10] can be applied to tackle this
difficulty. However, strongly singular and hypersingular boundary integrals are
found in the Burton–Miller formulation. Instead of using various singularity
subtraction techniques, they can be evaluated directly and efficiently when the
piecewise constant element discretization is employed [11].
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The coefficient matrix A in Eq. (10) involves the wave number k implicitly,
therefore, we have the following NEP:

A(k)x = 0. (11)

If there is nontrivial solution, we have

det[A(k)] = 0. (12)

Equation (12) is a highly nonlinear transcendental equation in k, hence it is very
difficult to solve analytically. In order to solve this nonlinear eigenvalue problem,
a contour integral method called the block SS method [7] is introduced in the next
section.

3 Eigenvalue analysis using block SS method

The block SS method proposed by Asakura et al. [7] is a projection method
which can extract eigenvalues inside a given contour C while preserving their
multiplicity. In this method, the moment matrices are defined as

Mm =
1

2πi

∫
C

zmUHA(z)−1Vdz, (13)

where U and V can be taken as arbitrary nonzero n×L matrices, n is the number
of DOF of the problem, and L should be superior to the maximum algebraic
multiplicity of the eigenvalues lying inside C. The contour integral on C can be
approximated using the N -point trapezoidal rule. If the integral path is chosen as
a circle with C = γ + ρeiθ, (0 ≤ θ < 2π), we can obtain the shifted and scaled
moment matrices as follows:

Mm ≈ M̂m =
1

N

N−1∑
j=0

(
ωj − γ

ρ

)m+1

UHA(ωj)
−1V, (14)

where ωj = γ+ρe2πi(j+1/2)/N , (j = 0, 1, · · · , N−1). Then, the Hankel matrices
H1 and H2 can be formed as

H1 =

⎛
⎜⎜⎜⎜⎝

M0 M1 . . . MK−1

M1 M2 . . . MK

...
...

. . .
...

MK−1 MK . . . M2K−2

⎞
⎟⎟⎟⎟⎠ , (15)

H2 =

⎛
⎜⎜⎜⎜⎝

M1 M2 . . . MK

M2 M3 . . . MK+1

...
...

. . .
...

MK MK+1 . . . M2K−1

⎞
⎟⎟⎟⎟⎠ . (16)
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where K is a positive integer. It is proved that the eigenvalues of the matrix pencil
H2 − kH1 are identical to those of the original eigenvalue problem [7]. After
obtaining H1 and H2, we perform singular value decomposition (SVD) on H1 as
follows:

H1 = CΣEH , (17)

where Σ = diag(σ1, σ2, · · · , σKL). Hence, the original nonlinear eigenvalue
problem can be converted into a standard eigenvalue problem of finding the
eigenvalues λj of the following matrix:

B = CHH2EΣ−1. (18)

After obtaining the λj , the eigenvalues kj can be recovered by

kj = γ + ρλj . (19)

Moreover, to ensure appropriate numerical accuracy, a suitable threshold can be
found according to Ref. [12] to truncate the SVD in Eq. (17) in order to omit the
small and unexpected eigenvalues.

It should be noted that we have to calculate A−1V for N wave numbers along
the integral path C in Eq. (14). Instead of evaluating A−1, we can solve the
following equations:

AX = V, (20)

where X and V are matrices of n × L. It is known that Eq. (20) is very time-
consuming to obtain and solve in a conventional way even with appropriate
iterative solvers. In order to accelerate the solution process and reduce the storage
requirements, the ACA algorithm is introduced in the next section.

4 ACA-BEM

It is well known that the coefficient matrix of the BEM is neither singular nor rank-
deficient except at the resonances. Because of the nature of the Green’s function,
however, the coefficient matrix consists of many numerically rank-deficient sub-
blocks [6]. Namely, a boundary element matrix can be split into a collection
of blocks, some of which, called low-rank blocks, allow a special compressed
representation, while others, called full-rank blocks are computed directly. In
the ACA-BEM, the low-rank blocks describe remote interactions of groups of
boundary elements, and the ACA algorithm [6] allows to approximate the low-
rank blocks using only few rows and columns of the blocks. For instance, let
a rectangular matrix Zs×t represent a low-rank block in a boundary element
coefficient matrix. The ACA algorithm aims to approximate Zs×t by Z̃s×t, which
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can be written in the following product form:

Zs×t ≈ Z̃s×t = Us×rVr×t =

r∑
i=1

us×1
i v1×t

i , (21)

where r is the number of ACA iterations and also the rank of the matrix Z̃s×t,
Us×r and Vr×t are two dense rectangular matrices. The goal of the ACA
algorithm is to achieve

‖ Zs×t − Z̃s×t ‖≤ ε ‖ Zs×t ‖, (22)

for a given tolerance ε, where ‖ · ‖ denotes the matrix Frobenius norm. In
numerical applications, the rank r ≤ min(s, t), thus, instead of storing and
calculating all s × t entries, the algorithm only requires to calculate and store
r × (s + t) entries. Then, the matrix-vector product can be evaluated in two steps
as follows:

Zs×tXt×1 ≈ Z̃s×tXt×1 = Us×r(Vr×tXt×1). (23)

Therefore, the number of essential operations for matrix-vector product is
also O(r(s + t)). In the ACA-BEM, we first calculate the matrix and known
vector product on the right-hand side of Eq. (10), then calculate the matrix
and unknown vector product on the left-hand side and update the unknown
vector in iterative solvers, such as the IDR(s) solver [13] adopted in this study.
Since the boundary element linear equations (Eq. (20)) required in the block SS
method are with multiple right-hand sides, a block version of IDR(s) solver [8]
is employed. In order to further improve the computational efficiency, a block
diagonal preconditioner [14] which is very simple and effective is also adopted.

5 Numerical examples

The rectangular box, as depicted in Fig. 1, is used as a numerical example to
demonstrate the accuracy and efficiency of the proposed method. The sound
pressures on the left and right side surfaces are given as pL and pR, respectively.
The other four surfaces are assumed to be rigid walls, i.e., normal velocities are
specified as zero on them. The media of acoustic fields are assumed to be air with
the density of ρ = 1.2 kg/m

3 and the sound speed of Cs = 340.0m/s.
Piecewise constant triangular elements are applied to discretize the boundary

surfaces, and all boundary integrals are evaluated numerically by using the
Gaussian quadrature formula with 10 integration points. The ACA tolerance ε is
set to 10−7. The iterative solver IDR(4) terminates iterations when the residue is
below a tolerance of 10−7. All computations were carried out in double precision
arithmetic on a desktop PC with an Intel 3.50 GHz Core processor and 31.1 GB
memory.
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Figure 1: The rectangular box model.

5.1 Convergence and efficiency studies

In the numerical experiments, l = w = h = 1.0m, pL = 0 and pR = 100.0Pa.
Thus, the analytical sound pressure at an internal point x (x1, x2, x3) is given as

p(x) =
100 sin(kx1)

sin(kl)
, 0 ≤ x1 ≤ l. (24)

Figure 2: Relative errors of the numerical results.
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Figure 3: CPU times used to solve the box model.

The sound pressures at nine internal points on the central line of the box
are calculated and compared with the analytical solution for a wave number
k = 1.0m−1. The relative errors of the results of different BEM approaches are
compared in Fig. 2, where the relative errors are the mean percentage relative
errors at the nine internal points. We refer to CBEM-LU and CBEM-IDR(4) as
the results obtained by the CBEM with the LU-decomposition and IDR(4) solvers,
respectively. It is shown that the ACA-BEM solutions are very close to those of the
CBEM-LU and CBEM-IDR(4), and converge very rapidly. It is also known from
Fig. 3 that the ACA-BEM approach is faster than the CBEM-LU and CBEM-
IDR(4) for models with more than 2400 and 7776 elements.

5.2 Eigenvalue analysis

In the eigenvalue analysis, by taking C = γ + ρeiθ, γ = (5.5, 0), ρ = 2.4 to
define the integral path, we obtain six eigenvalues located in the domain as shown
in Table 1. The parameters in the block SS method are set as N = 256, K =
4, L = 15. The numerical results are given in Table 2, and the Error is defined as

Error =
∣∣∣∣k

i
anal − Re(kinum)

kianal

∣∣∣∣× 100 (%), (25)

where kianal and kinum denote the analytical and numerical results, respectively.
Re(kinum) indicates the real part of kinum.

It is found that the eigenvalues whose multiplicity is one or larger than one can
both be extracted by using the proposed approach for acoustic wave problems.
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Table 1: Analytical eigenvalues from 3.1 to 7.9 ([m−1]).

√
n2
1 + n2

2 + n2
3 kianal Multiplicity

1 3.14159 1√
2 4.44288 2√
3 5.44140 1

2 6.28319 1√
5 7.02481 4√
6 7.69530 3

Table 2: Numerical eigenvalues from 3.1 to 7.9 ([m−1]).

CBEM ACA-BEM

i ki Error ki Error

1 3.14628+ 1.38× 10−3 0.1493 3.14628+ 1.38× 10−3 0.1493
2 4.44730+ 9.00× 10−4 0.0995 4.44730+ 9.01× 10−4 0.0995
3 4.44730+ 9.00× 10−4 0.0995 4.44732+ 8.93× 10−4 0.0999
4 5.44652− 6.50× 10−4 0.0941 5.44654− 6.27× 10−4 0.0945
5 6.29129+ 1.90× 10−3 0.1289 6.29128+ 1.92× 10−3 0.1288
6 7.02711− 1.16× 10−3 0.0327 7.02711− 1.16× 10−3 0.0327
7 7.02849− 1.36× 10−3 0.0524 7.02849− 1.36× 10−3 0.0524
8 7.03485+ 1.75× 10−3 0.1429 7.03484+ 1.75× 10−3 0.1428
9 7.03485+ 1.75× 10−3 0.1429 7.03485+ 1.75× 10−3 0.1429

10 7.69976− 3.89× 10−3 0.0580 7.69976− 3.89× 10−3 0.0580
11 7.69976− 3.89× 10−3 0.0580 7.69976− 3.89× 10−3 0.0580
12 7.70763+ 6.65× 10−4 0.1602 7.70762+ 6.66× 10−4 0.1601

Since the ACA algorithm is employed to accelerate the BEM, the proposed
approach can be used to solve large-scale acoustic eigenvalue problems.

6 Conclusions

In this paper, the SS method has been employed to solve nonlinear eigenvalue
problems governed by the Helmholtz equation and formulated through the BEM.

Boundary Elements and Other Mesh Reduction Methods XXXVI  413

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 56, © 2013 WIT Press



As a block version of the SS method is adopted, eigenvalues can be extracted
while preserving their multiplicity. In order to accelerate the solution process and
reduce the storage requirements of the BEM, the ACA algorithm associated with a
block IDR(s) solver and a block-diagonal preconditioner is employed. Numerical
examples have been presented to demonstrate the validity and efficiency of the
proposed approach, and also its great potential in large-scale acoustic eigenvalue
analysis.
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