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Abstract

The double-layer potential matrix H of the conventional, collocation boundary
element method (CBEM) is singular, as referred to a static problem in a bounded
continuum. This means that no rigid body displacements can be transformed
between two different reference systems – and that unbalanced forces are to
be excluded from a consistent linear algebra contragradient transformation. The
properties of HT may become quite informative, as they reflect the topology
(concavities, notches, cracks, holes) of the discretized domain as well as material
non-homogeneities, which comes from the fact that local stress gradients can be
represented by fundamental solutions only in a global sense. Symmetries and
antisymmetries are also evidenced in N(HT) as well as the spectral properties
related to simple polynomial solutions that one may propose as patch tests. In
the usual implementations of the CBEM with real fundamental solutions, all
eigenvalues λ of H are real, λ ∈ R, 0 ≥ λ < 1 for a bounded domain.
This means that H is a contraction – a paramount mechanical feature that comes
up naturally in the frame of a virtual work investigation of Kelvin’s (singular)
fundamental solution and is resorted to in a simplified variational implementation
of the boundary element method.
Keywords: boundary elements, hybrid boundary elements, spectral properties,
variational methods.

1 Introduction

This paper is a counterpart of reference [1], which assesses the single-layer
potential matrix G. It in part repeats and in part improves on a recently developed
research work [2]. The complete mathematical developments are too extensive
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and demand too many mechanical concepts – as well as elucidative illustrations
– to be contained in the present paper, which justifies the preparation of a
proper manuscript, to appear soon. The following developments apply to elasticity
problems, in general, with results for potential problems inferred directly.

A variationally based counterpart of the boundary element method was
introduced in 1987 [3–5]. Starting point was the generalized expression of the
total potential energy, to which displacement compatibility assumptions had to
be explicitly added, so clarifying the discussion on the symmetry characteristics
of the resultant equations: symmetry or nonsymmetry is a matter of adequate
or inadequate variational treatment of the boundary conditions. The variationally
consistent, generalized displacement formulation thus obtained turned out to
be equivalent to the formulation based on the Hellinger–Reissner potential [6],
exactly as Pian had developed for finite elements [7]. In allusion to Pian’s work this
new method was baptized the hybrid boundary element method – HBEM. In fact,
the name “hybrid finite element method” had been coined by Pian in 1967 “. . . to
signify elements which maintain either equilibrium or compatibility in the element
and then to satisfy compatibility or equilibrium respectively along the interelement
boundary” [8]. According to Oden and Reddy [9], Pian has formulated a hybrid
displacement method, since it results in a stiffness matrix.

In the HBEM, the null space N(HT) is specifically required, and their
properties may turn out difficult to deal with. Owing to their intricacy, it has
also become advantageous – and ultimately successful – to develop an alternative
variational formulation that only deals withN(H) [10,11]. However, the unfolded
mathematical properties of HT – and how they fit in a variational framework
– are elegant and beautiful per se. They are addressed in the following sections
starting from a simple virtual work statement. The properties that come out from
the present developments may become useful in the evaluation of results also in
the frame of the CBEM [4, 12]. They are presented herein exclusively as linear
algebra features, independently from applications that may be derived [13].

2 Basic assumptions and propositions

Let an elastic body be submitted to static traction forces ti on part Γσ of the
boundary and to displacements ui on the complementary part Γu. For the sake
of simplicity, body forces are not included. The present formulation applies in
principle to a finite, simply-connected open domain Ω with piece-wise smooth
boundary Γ that does not have cusps [14]. Unbounded and multiply-connected
regions are dealt with later on in terms of the domain Ω defined as the complement
of the closure of Ω. Thus, holes are ultimately comprised by the formulation.
Internal and edge cracks may also be included in the numerical model provided
that ad-hoc functions take the local stress gradients into account [15,16], a subject
that is beyond the present scope, although the implications of such topological
issues can be addressed in the present context, as they are uncovered as particular
properties of N(HT).
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For notation conciseness, the arguments x, y, z of functions in Cartesian
coordinates are omitted. Indicial notation is used. A subscript after a comma
denotes derivative with respect to the corresponding coordinate direction.
Repeated subscripts indicate summation. Arrays of constants are also referred
to without subscripts, using bold-face, capital letters for matrices, and bold-face,
lower letters for vectors.

2.1 Proposition on stress and displacement representations

The numerical model is formulated in terms of two fields:
• One field for displacements on Γ, given as functions of nd nodal

displacement parameters d = [dn] ∈ Rnd

located along Γ. These functions
have local support and satisfy the displacement boundary conditions as a
premise. This parametric representation is referred to as the external, or
displacement, reference system.

• A second field for stresses in Ω, given as a series of functions of n∗ point
force parameters p∗ = [p∗m] ∈ R

n∗
located along Γ. These functions have

global support and satisfy the domain equilibrium equations as a premise.
This parametric representation is referred to as the internal, or force,
reference system.

A displacement virtual work principle will provide the conceptual means of
correlating these two fields, in a way that naturally leads to the matrix H. Most
important, the formulation makes use of n∗ = nd singular fundamental solutions
for the stress representation in Ω. The following proposition is paramount to arrive
at the matrix H, as developed both in the CBEM and in the HBEMs, as well as for
its adequate mathematical assessment.

Proposition 1 The parameters d and p∗ are identified with nodal displacements
and forces that act at the same points distributed along the boundary Γ, in such a
way that p∗Td has the meaning of mechanical work.

There are nndof displacement and force degrees of freedom at each nodal point.
nndof = 1, 2 or 3, for general problems of potential, 2D elasticity and 3D elasticity,
respectively. One might in principle develop a formulation with any number of
parameters attached to each nodal point [17]. Another possibility would be to
have d and p∗ with no clear mechanical meaning at all, just as discretization
parameters [18]. Specific problems, such as in the gradient elasticity theory, may
demand higher nndof for a meaningful numerical discretization.

2.2 Displacement assumption on Γ

The displacements ui are approximated along Γ by udi given as

udi = uindn on Γ (1)

where uin are polynomial interpolation functions with compact support and dn
are nodal displacement parameters. The boundary geometry is approximated from
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the nodal attributes using the same interpolation functions uin (isoparametric
representation).

Equation (1) is supposed to hold along Γu, in particular: ui = uindn, in which
dn are nodal values of ui.

2.3 Stress assumption in Ω

The stress field in Ω is approximated by a sum of homogeneous, fundamental
solutions of the domain differential equilibrium equations,

σ∗
ij = σ∗

ijmp
∗
m (2)

where p∗m are force parameters and σ∗
ijm are singular fundamental solutions with

global support and analytical in Ω (σ∗
ijm may be called, in the present context,

interpolation, approximation or trial functions). Although omitted, the arguments
of the fundamental solutions are (x−xM , y−yM , z−zM), where (xM , yM , zM ) is
the source point – at which the point force p∗m is applied – and (x, y, z) is the field
point where the effect of p∗m is evaluated. A fundamental solution fulfills following
equilibrium equations as a premise:

σ∗
jim,j = 0

σ∗
ijm = σ∗

jim

}
in Ω (3)

Except for analyticity, no concern is explicitly made about equilibrium of the
fundamental solutions on Γσ, although some boundary conditions might be
included as a premise, too (Green’s functions). According to Proposition 1, the
fundamental solutions σ∗

ijm turn out to be singular just outside Ω, more precisely
at points of application of p∗m distributed alongΓ, so that one might express instead
of the first line of Eqn (3):

σ∗
jim,j +Δim = 0 in Ωext = Ω ∪Ω0 (4)

This is the usual expression found in the literature on boundary integral equations,
except that, for clarification of concepts, the extended domain Ωext = Ω ∪ Ω0 is
also used, where Ω0 is understood as a set of infinitesimally small, closed regions
containing each point of singularity. Δim is a pulse function, which has zero value
everywhere in the domain, except for the vicinity of the point of application of p∗m,
where it tends to infinity.

Proposition 2 Further to Proposition 1, let Δim be normalized, for a domain
Ωext comprising a singularity, as∫

Ωext

ΔimdΩ ≡
∫
Ω0

ΔimdΩ = δim (5)

where δim is a generalized Kronecker delta.
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Thus, p∗m in Eqn (2) has the meaning of a unit point force applied at a nodal
point on Γ, according to Proposition 1, with m characterizing both location and
direction.
Ω is the actual domain of interest and there is in principle no need to invoke

the extension Ωext. The singularity explicitly expressed by Δim in Eqn (4) is
a welcome feature, as it assures that the resulting equation systems are well
conditioned.

3 Displacement virtual work

In the absence of body forces, equilibrium of the stress field σ∗
ij with forces ti

along Γσ occurs if and only if∫
Ω

σ∗
jiδε

d
ijdΩ =

∫
Γσ

tiδu
d
i dΓ (6)

for an arbitrary, virtual field of displacements δudi such that δudi = 0 on Γu and
δεdij = 1

2

(
δudi,j + δudj,i

)
in Ω. The stress field σ∗

ij approximated according to
Eqn (2) already satisfies Eqn (3). Taking into account that δudi = 0 on Γu, the
boundary integral of Eqn (6) may be extended to the whole boundaryΓ. Integration
by parts of the term on the left-hand side of Eqn (6), application of Green’s theorem
and use of Eqns (1) and (2) lead to the matrix expression

HTp∗ = p (7)

where H = [Hmn] ∈ R
n∗×nd

and p = [pn] ∈ R
nd

are expressed, for a bounded
domain, as

Hmn =
∫
Γ σ

∗
jimηjuindΓ ≡ ∫Γext

σ∗
jimηjuindΓ + δmn

≡ ∫Γfp
σ∗
jimηjuindΓ +

∫
Γdisc

σ∗
jnmηjdΓ

(8)

pn =

∫
Γ

tiuindΓ (9)

p is the vector of equivalent nodal forces, which is in part known (on Γσ) and
must be in part evaluated (as reaction forces along Γu), for a general mixed
boundary problem. H is the same double-layer potential matrix obtained in the
collocation boundary element method [19]. δmn is the identity matrix I of order
n∗ = nd. The evaluation of H is straightforward also for unbounded and multiply-
connected domains, with the boundary unit normal −→η always pointing outward.
The boundary integral of Eqn (8) is singular, for m and n referring to the same
nodal point, but may be completely evaluated either mathematically – split into a
Cauchy principal value (in terms of a finite-part integral) and a discontinuous term
– or by using rigid body displacements, according to Eqn (13). Figure 1 illustrates
the three mathematical equivalences stated in Eqn (8) for the boundary segment in
the vicinity of a singularity point, in which it is seen that the singularity is outside
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the domainΩ. Application of the virtual work principle of Eqn (6) to an unbounded
domain is straightforward. Figure 2 illustrates Eqn (8) applied to an infinitely large
domain Ω – complementary to the closure of Ω – enclosed externally by a single
boundary Γ∞ and internally by the same boundary of Fig. 1, but characterized as
Γ, since the outward normal −→η is reversed. The finite-part integrals for Γ and Γ
have the same magnitude and reversed signals. The discontinuous terms for Γ and
Γ add to δim, as a result of Eqn (5). Then, if one denotes the result of Eqn (8) for
the complementary domain Ω as H, a corresponding expression may be written as

Figure 1: Illustration of the three mathematically equivalent forms of Eqn (8) for a
bounded domain.

Figure 2: Illustration of the three mathematically equivalent forms of Eqn (8) for
an unbounded domain.

H
T
p∗ = p where H

T
= I−HT (10)

The coefficients of p for prescribed tractions are evaluated along Γσ.

4 Linear algebra properties of the transformation matrix H

As formulated, HT is an equilibrium matrix that transforms nodal forces p∗ of the
internal reference system into equivalent nodal forces p of the external reference
system. It is obtained in the complete frame of the Hellinger–Reissner potential
that H is a kinematic matrix that transforms nodal displacements d of the external
system into equivalent nodal displacements d∗ of the internal system. This is
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expressed as

d∗ = Hd ⇔ p = HTp∗; d
∗
= Hd ⇔ p = H

T
p∗ (11)

and it is obtained from Eqns (10) and (11) that

d∗ + d
∗
= d and p+ p = p∗ (12)

Let the columns of the matrix W ≡ N(H) = [Wns] ∈ R
nd×nrig

be a basis
of the set of nrig rigid body displacements that the bounded body may suffer, as
measured at the nodal points. W depends only on the body geometry. Also, define
a matrix V ≡ N(HT) = [Vns] ∈ Rnd×nrig

. Differently from W, V, as expressed
in the following, depends on uin and σ∗

ijm (and thus from the material properties
of the elastic problem [20]):

HW = 0; HTV = 0 (13)

HW = W; H
T
V = V (14)

4.1 Some basic theorems

Owing to space restrictions, following theorems are given without proof. These
and a few more theorems are detailed in the full version of the paper.

Theorem 1 (Evaluation of V) If H is nondefective, then WTV, H + WWT

and H + WWT have all full range. Then, a simple means of evaluating V,
whenever required, is by solving the equation system

(
H+WWT

)
V = W.

Theorem 2 (Contraction) H is a contraction [21], and so is HT, since from
Eqns (11) and (12), for any norm ‖•‖, ‖p‖ =

∥∥HTp∗∥∥ ≤ ‖p∗‖, ‖p‖ =∥∥∥HT
p∗
∥∥∥ ≤ ‖p∗‖.

Theorem 3 (Diagonal of H) 0 < Hjj < 1, 0 < Hjj < 1 for all j =
1, · · · , n∗ = nd.

Theorem 4 (Positive direction) p∗Tp∗ > p∗Tp ≥ 0, p∗Tp∗ ≥ p∗Tp > 0.

Theorem 5 (Real eigenvalues) All eigenvalues λ and eigenvectors φ of H are
real. Moreover, for any λ: 0 ≤ λ < 1.

Theorem 4 follows from Proposition 1 and the displacement and stress
assumptions, or simply from Theorem 3. A proof of Theorem 5 follows from
Theorem 4, which must be valid for any eigenvector φ of HT. Suppose that φ
is complex, with corresponding complex eigenvalue λ, and let ( )∗ only in the
following outline mean the Hermitian adjoint. One obtains from φ∗HTφ ≥ 0
and Theorem 2 that 0 ≤ 
(λ) < 1. The proof that �(λ) = 0 deserves
more attention. A strict proof takes into account some degenerate cases as when
geometry symmetries are included in the formulation.
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In case of Neumann boundary conditions, the complete solution of a problem
(except for rigid body displacements) is obtained by solving Eqn (10) for an
unbounded domain, as H

T
is nonsingular, or Eqn (7) for a bounded domain,

subjected to the restriction that VTp∗ = 0 (see also [2]).
Given a submatrix WN = [WNns] ∈ Rnndof ×nrig

of W related to a nodal point
N , then WT

NWN is always nonsingular and well conditioned, independently from
problem topology and from material properties. Then, HW = 0, Eqn (13), for
a bounded domain is a means to evaluate the coefficients of H about its main
diagonal, thus circumventing the need to deal with the singular boundary integral
of Eqn (8) – which is actually a not palpable advantage for large equation systems.
A similar property is attached to V, although involving some far reaching concepts
and being not as generally applicable [20].

Theorem 6 If a numerical model converges to the idealized mechanical problem
with increasing mesh refinement, then it is possible to have a boundary mesh such
that, for all points in Ω not too close to the boundary nodes, ‖σ∗ijmVmr‖ ≤ ε for
an arbitrarily small error ε ≥ 0.

This theorem [13] follows from the fact that V is a basis of point forces p∗ that
are not in equilibrium and therefore cannot generate a stress state [4]. This theorem
may be used in a reverse way, according to the following.

Proposition 3 For points in Ω that are too close to a boundary node, so that
the boundary layer effect becomes perceptible (or at the boundary node itself,
which is actually outside Ω, as illustrated in Figs. 1 and 2), the term σ∗

ijm of the
fundamental solution in Eqn (2) that tends to increase without bounds may be
consistently replaced with finite terms evaluated in such a way that ‖σ∗

ijmVmr‖ =
minimum, for elasticity problems in general.

Let VN = [VNns] ∈ Rnndof ×nrig

be a submatrix of V related to a nodal
point N . The use of Proposition 3 to obtain results at a point close to or at
the nodal point N in terms of least squares is only possible if VT

NVN is well
conditioned. However, this is not the case for points close to or at crack or notch
tips, strong concavities and cavities, as well as for symmetry axes or planes in
case of numerical problems that have symmetries embedded in the formulation,
not to mention some unpredictable locations on a geometrically convex domain
that contains a non-homogeneous material [20]. In fact, a problem in a convex
domain with non-homogeneous properties may be expressed via a Kirchhoff-like
transform as an equivalent one with homogeneous properties: the transformed
geometry may present strong concavities. It is amazing to find out that the
problem formulated from the proposition that ‖σ∗

ijmVmr‖ is a minimum is always
consistent, but involves, in case of strong local non-convexities, a division between
small numbers that are in the range of the discretization error, which still validates
Theorem 6 but then becomes of no usage for a practical implementation [20].

The explanation of this fact is extremely simple, although its has taken many
years of investigation to become clear. For points in a region far from the
boundary or close to a strictly convex part of the boundary, the stress gradient
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may be globally described and Proposition 3 is, whenever necessary, a means of
eliminating the spurious gradient locally introduced by the singular fundamental
solution. On the other hand, a region close to crack or notch tips, for instance, has
a stress gradient that is locally conditioned and must be described adequately. In
such a case the ill-conditioning of VT

NVN only tells that the mathematics of the
problem is not contradicting the local mechanical peculiarities.

This problem has astonished the author and his collaborators from the very
beginning of the development of the HBEM. However, it has been completely
understood and explored in its mathematical elegance and appropriateness.
Depending on the problem, the local stress gradient must be dealt with directly.
There are in general sound mechanical alternatives to circumvent ill-conditioning
problems related to VT

NVN [13, 22].
As shown in the extended version of this paper, the spectrum σ(H) characterizes

if a domain is bounded or unbounded, simply or multiply connected. Together
with ‖VT

NVN‖, for N spanning all the boundary nodal points of the numerical
model, cavities and concavities may be precisely identified, in general, as well as
embedded symmetries.

5 Conclusions
This paper emphasizes the conceptual basis of the double-layer potential matrixH,
as derived from a well established variational principle and directly applicable to
the conventional boundary element method. Moreover, its most elementary linear
algebra properties are investigated. However, owing to paper length constraint
several features had to be omitted and their discussion postponed to a more
extensive publication. The most important feature that could not be investigated
is related to the eigenvalues of H as a contraction. The main advantages of
the CBEM, as usually implemented, rely on these linear algebra properties.
On the other hand, a boundary element formulation – variational or not –
might be conceived, in which the boundary interpolation functions uin or the
singular fundamental solutions σ∗

ijm are not according to the basic equations and
propositions of Section 2. A feasible boundary element formulation (in which H
is defective, for instance) might still be developed, although lacking generality
and several properties that render the equations well conditioned. The “regularized
boundary element methods”, in which the source point is located at a finite
distance outside the domain, are just an example of formulation for which the
matrix H has no clear and sound properties. The mathematical properties, for
the problem as stated, owe their elegance to two in part related singularities: of
the fundamental solutions and in terms of linear algebra. Not coincidentally, the
single-layer potential matrix G of the boundary element methods also features
interesting linear algebra properties that still deserve a deeper investigation [1].

Acknowledgements

This project was supported by the Brazilian agencies CAPES, CNPq and FAPERJ.

Boundary Elements and Other Mesh Reduction Methods XXXV  217

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 54, © 2013 WIT Press



References

[1] Dumont, N.A., An assessment of the spectral properties of the matrix G used
in the boundary element methods. Computational Mechanics, 22, pp. 32–
41, 1998.

[2] Dumont, N.A., On the spectral properties of the double layer potential
matrix H of the boundary element methods. PACAM XI - 11th Pan-American
Congress of Applied Mechanics, ed. A.R. Aguiar, Foz do Iguaçu.
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