
The Complex Variable Boundary Element
Method for potential flow problems

M. Mokry
Institute for Aerospace Research, National Research Council, Canada

Abstract

The Cauchy type integral, used to represent the complex velocity, is converted to
a line distribution of sources and vortices in the complex plane. The specification
of the normal velocity on the bounding contour leads to a Riemann-Hilbert prob-
lem, which provides the theoretical foundation of the method. The boundary ele-
ment discretization results in a simple algorithm for calculating potential flows in
multiple-connected domains. Flow problems with periodic or homogeneous outer
boundary conditions are treated using the concept of the Green’s function in the
complex plane.

1 Introduction

The Complex Variable Boundary Element Method (CVBEM) evolved as a numer-
ical procedure for solving boundary value problems for analytic functions in terms
of discretized Cauchy type integrals [1]. The method described in this paper is
based on the same principle. However, instead of linking the integral to the com-
plex potential, as is commonly done, it is linked to the complex velocity. The main
advantages of this approach are: 1) the complex velocity is single-valued and hence
no cuts in the computational domain are necessary and 2) the representing Cauchy
type integral is equivalent to the contour distribution of source and vortex singular-
ities. By selecting the Cauchy density as the boundary value of a function analytic
in the external flow region, it is possible to specify the far field condition such that
there is no flow in the complementary interior domain. In this particular case the
normal and tangential velocities become decoupled, corresponding to the source
and vortex densities respectively. The imposition of the normal-velocity bound-
ary condition and the subsequent discretization by boundary elements leads to the
vortex panel method in the complex plane, reported earlier [2].
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2 Cauchy integral formulation

The complex disturbance velocity is represented by the Cauchy type integral

w(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ, (1)

where z and ζ are the complex coordinates of the observation and contour points
respectively and C is the counterclockwise oriented, simple closed airfoil contour,
Fig. 1a. The Cauchy density f is a continuous, complex-valued function defined
on C. For multi-component airfoils, C is a union of nonintersecting simple-closed
contours.

(a) geometrical description (b) approximation polygon

Figure 1: Single airfoil.

Introducing the angle ν between the outward normal to C and the real axis,
the integral of Eq. (1) can be converted to the contour distribution of sources and
vortices

w(z) =
∫

C

[
σ(ζ)

2π(z − ζ)
+

iγ(ζ)
2π(z − ζ)

]
|dζ|, (2)

using

dζ = [− sin ν(ζ) + i cos ν(ζ)]|dζ| = ieiν(ζ)|dζ| (3)

and

f(ζ) = −[ σ(ζ) + iγ(ζ)]e−iν(ζ). (4)

The real-valued functions σ and γ are the source and vortex densities respectively.
There is a multiplicity of density functions f capable of representing a given

analytic function w in either the internal domain D+ (to the left of C) or the exter-
nal domain D− (to the right of C). For an external flow problem, it is natural to
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specify f(ζ) as the boundary value of a function f(z) analytic in D− and contin-
uous in D− ∪ C. Applying the Cauchy integral formula to Eq. (1), we obtain

w(z) =

{
f(∞) − f(z), z ∈ D− ∪ C,

f(∞), z ∈ D+,
(5)

where f(∞) is the value of f(z) as |z| → ∞.
If the free stream velocity is of unit magnitude and angle α to the real axis, the

(total) complex velocity will be

W (z) = e−iα + w(z). (6)

Choosing f(∞) = −e−iα, it follows from Eqs. (5) and (6) that the fictitious inte-
rior flow vanishes whereas on the exterior face of the contour

W (ζ) = −f(ζ). (7)

From Fig. 1a it can also be verified that in terms of the normal and tangential
components

W (ζ) = [Vn(ζ) − iVt(ζ)]e−iν(ζ). (8)

Substituting Eq. (4) in (7) and comparing the latter with Eq. (8) shows that

Vn(ζ) = σ(ζ) and Vt(ζ) = −γ(ζ). (9)

Accordingly, the discharge and circulation constants are given by

Q =
∫

C

Vn|dζ| =
∫

C

σ(ζ)|dζ| and Γ =
∫

C

Vt|dζ| = −
∫

C

γ(ζ)|dζ| (10)

3 Airfoil boundary value problem

We assume that the normal component of velocity Vn ≡ σ is prescribed (typi-
cally as zero) on the closed airfoil contour C. From Eqs. (6) and (8) the following
boundary condition is obtained for the complex disturbance velocity:

Re
{
[e−iα + w(ζ)]eiν(ζ)

}
= σ(ζ). (11)

Equation (11), written in the form

Re

{
w(ζ)
q(ζ)

}
= c(ζ), (12)

where
q(ζ) = e−iν(ζ) and c(ζ) = σ(ζ) − cos[ν(ζ) − α], (13)

are functions prescribed on the contour C, specifies the Riemann-Hilbert problem
for the analytic function w. It resembles the Schwarz problem, except that the term
in the curly brackets of Eq. (12) is not a boundary value of a function analytic in
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D−. Using Gakhov’s regularization method [3], it can be shown that the solution
can be made unique by specifying the circulation Γ if C is smooth [4] or by requir-
ing that w be bounded if C possesses a single corner point [5], also known as the
trailing edge. Since a discontinuity of the density function f gives rise to a loga-
rithmic singularity in the integral of Eq. (1), this (Kutta-Joukowski) condition is
synonymous with the requirement that f be equal on the upper and lower sides of
the trailing edge: fU = fL. For the trailing edge angle

θ = νL − νU − π, π > θ > 0 (14)

we obtain from Eq. (4) the conditions

γU =
σL + σU cos θ

sin θ
and γL = −σU + σL cos θ

sin θ
. (15)

Although an explicit solution of Eqs. (12)–(13) exists [4], its evaluation involves
conformal mapping as an intermediary step and hence is less practical than a direct
numerical solution obtained by the CVBEM.

4 The CVBEM algorithm

The airfoil contour is approximated by n straight-line boundary elements, as indi-
cated in Fig. 1b. The nodal points, which are the vertices of the approximation
polygon, are numbered counterclockwise, 1, 2, . . . , n + 1, starting with the upper
trailing edge point, ζ1 and ending with the lower trailing edge point, ζn+1. The
jth boundary element is the line segment between points ζj and ζj+1. For a closed
trailing edge, ζn+1 = ζ1.

The Cauchy type integral of Eq. (1) is discretized as

w(z) =
n∑

j=1

∆jw(z), (16)

where ∆jw(z) =
1

2πi

∫ ζj+1

ζj

f(ζ)
ζ − z

dζ (17)

is the contribution of the jth boundary element to the complex disturbance velocity
at the observation point z.

In the present method, the density function f between the boundary element end
points ζj and ζj+1 is represented by the linear trial function

f(ζ) = fj +
fj+1 − fj

ζj+1 − ζj
(ζ − ζj)

=
fj+1 − fj

ζj+1 − ζj
(ζ − z) + fj+1

z − ζj

ζj+1 − ζj
− fj

z − ζj+1

ζj+1 − ζj
, (18)

where fj and fj+1 are the values of f(z) at the respective end points of the bound-
ary element. Substituting Eq. (18) in Eq. (17), we find

∆jw(z) =
fj+1 − fj

2πi
+

1
2πi

[
fj+1

z − ζj

ζj+1 − ζj
−fj

z − ζj+1

ζj+1 − ζj

]
ln

ζj+1 − z

ζj − z
. (19)
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From Eq. (4) we have for the jth boundary element

fj = −(σj + iγj)e−iνj

fj+1 = −(σj+1 + iγj+1)e−iνj , (20)

where

eiνj = cos νj + i sin νj = −i
ζj+1 − ζj

|ζj+1 − ζj | . (21)

The logarithmic term of Eq. (19) can be written

ln
ζj+1 − z

ζj − z
= ln

∣∣∣∣ζj+1 − z

ζj − z

∣∣∣∣ + iτ,

where−π ≤ τ ≤ π is the angle obtained by the rotation of the vector ζj−z into the
direction of the vector ζj+1 − z, see Fig. 1b. In the limit as the point z approaches
an interior point of the jth boundary element from the flow field side D−, τ tends
to the value −π. Accordingly, the complex disturbance velocity induced by the jth
segment at its own midpoint

zj =
1
2
(ζj + ζj+1) (22)

is

∆jw(zj) =
fj+1 − fj

2πi
− 1

4
(fj+1 + fj). (23)

From Eqs. (16),(19),(20) and (23), we obtain for the complex disturbance veloc-
ity at the midpoint zk of the kth segment

w(zk) =
n+1∑
j=1

Ck,j(σj + iγj), k = 1, . . . , n. (24)

The complex matrix Ck,j can be evaluated as

Ck,j = Kk,j + Lk,j (25)

where

Kk,j =




e−iνj

2πi

(
1 + zk−ζj+1

ζj+1−ζj
ln ζj+1−zk

ζj−zk

)
, j �= k, n + 1(

1
4 + 1

2πi

)
e−iνk , j = k

0, j = n + 1

(26)

Lk,j =




−e−iνj−1

2πi

(
1 + zk−ζj−1

ζj−ζj−1
ln ζj−zk

ζj−1−zk

)
, j �= 1, k + 1(

1
4 − 1

2πi

)
e−iνk , j = k + 1

0, j = 1

(27)
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Equation (11) is to be satisfied at all boundary element midpoints:

Re
{
[e−iα + w(zk)]eiνk

}
=

1
2
(σk + σk+1), k = 1, . . . , n, (28)

where σk and σk+1 stand for the prescribed values of normal velocity at the end-
points of the kth boundary element. Substituting from Eq. (24) and separating the
terms containing the unknown values of vortex density from the given quantities,
we obtain

n+1∑
j=1

Im
{
eiνkCk,j

}
γj = Re

{
eiνk(e−iα +

n+1∑
j=1

Ck,jσj)
}
−1

2
(σk + σk+1)

k = 1, . . . , n. (29)

This represents a system of n linear algebraic equations in n + 1 unknown vortex
densities γj . However, with the inclusion of the two trailing edge conditions of
Eq. (23), we end up with n + 2 linear equations in the n + 1 unknown vortex
densities.

Thus, adopting for Eq. (29) the matrix notation

Ak,jγj = bk

and, inserting the trailing-edge conditions of Eq. (15) as the first and the last rows,
we obtain

A1,j =

{
1, j = 1
0, j = 2, . . . , n + 1, b1 = σn+1+σ1 cos θ

sin θ

Ak+1,j = Im
{
eiνkCk,j

}
, k = 1, . . . , n, j = 1, . . . , n + 1

bk+1 = Re

{
eiνk(e−iα +

n+1∑
j=1

Ck,jσj)
}
− 1

2
(σk + σk+1), k = 1, . . . , n

An+2,j =

{
0, j = 1, . . . , n

1, j = n + 1, bn+2 = −σ1+σn+1 cos θ
sin θ .

The cosine and sine of the trailing edge angle θ are obtained according to Eq. (14)
as the real and imaginary parts of

eiθ = ei(νn−ν1−π) =
ζn − ζn+1

|ζn − ζn+1|
|ζ2 − ζ1|
ζ2 − ζ1

.

An extension of the algorithm to a multi-component airfoil is fairly straightfor-
ward [2]. Denoting by m(1), m(2), . . ., the number of boundary elements on the
airfoil components 1, 2, . . ., the numbering is such that ζ1, ζ2, . . ., ζm(1)+1 are
the corner points of the first component, ζm(1)+2, ζm(1)+3, . . ., ζm(1)+m(2)+2 the
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Figure 2: Williams airfoil.

corner points of the second component, and so on. The two trailing edge condi-
tions (15) are satisfied on each airfoil component, leaving the system of linear
equations overdetermined by the number of airfoil components. Several methods
can be used to solve numerically such a system [2].

Once the values γj have been computed, the normal and tangential components
of velocity at the corner points are obtained as equal to σj and −γj respectively,
see Eqs. (9). The corresponding pressure coefficients are obtained as

Cp(ζj) = 1 − (σ2
j + γ2

j ). (30)

A numerical example is given for Williams’ two-component airfoil [6], configu-
ration ‘A’, designed by conformal mapping. The number of boundary elements is
m(1) = m(2) = 62, with the contour point coordinates listed in [6]. From Fig. 2 it
is seen that the CVBEM reproduces the pressure distributions correctly, including
the steep suction peaks.

5 Modified distributions of sources and vortices

If the external flow around a body is subject to periodic or outer constraints, which
can be described by linear homogeneous boundary conditions, it is convenient to
generalize the line distribution of sources and vortices as

w(z) =
∫

C

[σ(ζ)Gσ(z, ζ) + γ(ζ)Gγ(z, ζ)]|dζ|, (31)
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where C is the body contour and

Gσ(z, ζ) =
1

2π(z − ζ)
+ Hσ(z, ζ), Gγ(z, ζ) =

i

2π(z − ζ)
+ Hγ(z, ζ) (32)

are the Green’s functions with the analytic parts Hσ and Hγ .

5.1 Cascades

Consider an infinite cascade of blades with the oncoming stream parallel to the
x-axis as illustrated in Fig. 3a. The cascade is characterized by the spacing (pitch)
t, stagger angle β, inlet angle β1 and outlet angle β2 (unknown).

The periodicity boundary condition is

w(z) = w(z ± kτ), k = 1, 2, 3, . . . , (33)

where τ is the complex spacing

τ = teiβ1 . (34)

Using the method of images [7]

Hσ(z, ζ) =
1
2τ

[
cot

π(z − ζ)
τ

− τ

π(z − ζ)

]
+

i

2τ
Hγ(z, ζ) = iHσ(z, ζ). (35)

Important limiting values are

lim
z→ζ

Hσ(z, ζ) =
i

2τ
, lim

x→−∞Hσ(z, ζ) = 0, lim
x→∞Hσ(z, ζ) =

i

τ
,

lim
z→ζ

Hγ(z, ζ) = − 1
2τ

, lim
x→−∞Hγ(z, ζ) = 0, lim

x→∞Hγ(z, ζ) = −1
τ
.

From Eqs. (10) and (31)–(32),

lim
x→−∞w(z) = 0, lim

x→∞w(z) =
1
τ

(Γ + iQ). (36)

Using Eqs. (34) and (36), the deflection angle δ, measured positive in the clock-
wise direction, is obtained from

tan δ = lim
x→∞

Im{w(z)}
1 + Re{w(z)} =

Q cosβ1 − Γ sin β1

t + Γ cosβ1 + Q sin β1
(37)

and the outlet angle from
β2 = β1 + δ. (38)

A numerical verification is given for the Gostelow compressor cascade [8]. The
geometrical parameters of the cascade are: spacing to chord ratio t/c = 0.99,
stagger angle β = 52.5o and inlet angle β1 = 36.5o, see Fig. 3a. The agreement
of the CVBEM pressure distribution with the theoretical one is demonstrated in
Fig. 3b. The calculated outlet angle β2 = 59.80o compares reasonably well with
Gostelow’s exact value of 59.98o.
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(a) geometry (b) pressure

Figure 3: Gostelow cascade.

5.2 Wind tunnel walls

Flow between two parallel walls, specified by the boundary condition

Im{w(z)} = 0, −∞ < x < ∞, y = ±h

2
, (39)

can be handled similarly. By the method of images [2]

Hσ(z, ζ) = B(z, ζ) + E(z, ζ) +
1
h

, Hγ(z, ζ) = i[B(z, ζ) − E(z, ζ)], (40)

where, using the over bar for complex conjugation,

B(z, ζ) =
1
2h

[
exp

(
π

z − ζ

h

) − 1
]−1

− 1
2π(z − ζ)

E(z, ζ) = − 1
2h

[
exp

(
π

z − ζ

h

)
+ 1

]−1

(41)

From Eqs. (31)–(32) and (40)–(41) it can be shown that

lim
x→−∞w(z) = 0, lim

x→∞w(z) =
1
h

Q, (42)

which is consistent with the ‘wake blockage’ phenomenon.
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6 Concluding remarks

This paper shows that the two-dimensional vortex panel method implemented in
the complex plane can be regarded as a special CVBEM case. The method is par-
ticularly well suited for potential flow problems in multiple connected domains.
Its accuracy and versatility has been demonstrated on two examples.
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