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Abstract

The numerical schemes of the Dual Reciprocity Boundary Element Method are
developed and used to simulate the problems of phase change and thermal wave
propagation. The two-dimensional thawing characters of frozen working medium in
microgravity heat pipe are presented in this paper. The superposition, resolution.
reflection and phase jumping phenomenon of the thermal wave propagation in biological
tissues are also shown in the paper.

Introduction

Recently, the Dual Reciprocity Boundary Element Method (DRBEM) is
developed as the effective numerical method of pure boundary integral
without domain integra]m. The DRBEM has been successfully applied to
solve the problems as the steady and unsteady heat conduction, the sonic
propagation in subsonic non-homogeneous flow, the flow and heat transfer

with dissipation effect and inner heat source. However the reports to solve
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the problems about the heat conduction with phase-change and the thermal
wave propagation by the DRBEM have been not yet seen. In this paper the
DRBEM is extended to simulate the thawing process of the working medium
in the microgravity heat pipe of high capacity parallel channel and the
thermal wave propagation in biological tissues.

The DRBEM for simulating these problems

The basic idea of the DRBEM is to transform the control equation into
boundary integral equation by a fundamental solution corresponding to the
Laplace equation. The non-homogeneous terms (which can not be easily
transformed to boundary integration through traditional boundary element
method) in the original equation are further transformed into the boundary
integral through a procedure which involves a series expansion using global
approximating functions and the application of reciprocity principles“] .

The control equation to describe these problems can be written as
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Employing the dual reciprocity theorem, equation (1) can be transformed
into pure boundary integral equation, and its discretizing form is as the
follow:
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Where C, =y /27 (y is internal angle at point 7 in

radius).q = 89/ n 0" = ln(l/r),q' =36" /On, n is the unit outward
normal to boundary I'.a = F 'h= F"(aé+ bO+cO+ d), where each
column of F' consists of a vector f ,containing the values of the function
f =1+r at the (N+L) DRBEM collocation points. N are the numbers of
boundary nodes. L are the numbers of internal nodes. O=70/ ar,
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the distance from the point i of the application of the concentrated source to
any other point j under consideration.
Then the matrix form of equation (2) becomes
—(H& -GQO)F ™ (af +b6+cO+d)+ HO=Gg Oy
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The time discretizing schemes are: 9=——(9'"” +6"" —26""),

At
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Where 6, and 6, are parameters which position the values of & and g
between time levels m and m+1, respectively. Letting

S = —(Hé - GQ)F = after substituting the time discretizing schemes into

equation (3), the equation of numerical calculation is obtained as the follow:
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The thawing process of the frozen working
medium of modeling liquid channel in parallel
channels microgravity heat pipe

Recently, some kinds of high capacity parallel channels heat pipe are
being researched and applied to astrovehicle, space station, space shuttle and
so on. For example, the Grumman monogroove heat pipe and the Lockheed
graded-groove heat pipe are two of them. They are comprised of two parallel
circular channels: vapor flow and liquid flow channels. When the parallel
channels heat pipe is started up in space, total working medium exists as
solid phase since the temperature is too low in space. Besides, the working
environment of these heat pipes in space is very complex. The working
liquids of the heat pipes may be frozen in extreme case. Therefore, for start-

up or restart-up heat pipe, it is necessary to thaw frozen working medium.
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The numerical simulation for the two-dimensional thawing process of the
radial cross section in the evaporator of the heat pipe had been made by
Green’s function boundary element method?!. In this paper, the DRBEM
extended to calculate the thawing process of the frozen working medium of
the axial cross section in modeling liquid channel of the heat pipe (see Fig.
).

During the working medium in the pipe is thawed, the flow velocity of
liquid medium is so small, that convective heat transfer can be neglected.
The working temperature in heat pipe during thawing process is so low, that
the radiant heat transfer can be also neglected. Therefore, the control

equation in thawing process is transient heat conduction (parabolic-diffusion)
pC
equation. In this case, 0=17,a=c=d=0,b= T T,p,C,A are

temperature, density, heat capacity and thermal conductivity, respectively.
Equation (1) and corresponding pure boundary integral equation can be
simplified.

Initial and boundary conditions are chosen as follow: T(x,y,0) =T, ,
where T is the thawing temperature of working medium; a constant heat
flux is applied on the end of the channel (x = 0); in order to correctly
capture phase-change interface, Fourier relation is used on phase-change

interface:
T, T,
A

on, on,

A +p Q.U (5)

Where, (). and [ are the latent heat of phase change and the normal
velocity of phase change interface respectively; k=1, or k=2,
subscripts 1, 2 and 3 refer to shell, liquid and solid working medium,
respectively. On the interface between shell and working medium, the
following balance of heat flux is used: 4,07, /Jn, = A,0T,/Jn,. On
other boundary, adiabatic condition is used.

A relaxation iterative scheme is used to iteratively calculate the
conditions of the both interfaces - between shell and working medium and
between liquid and solid working medium.

The method is used to model the thaw process of the frozen working

medium of axial cross section in a modeling liquid channel of the parallel
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channels heat pipe. As shown in Fig. 2, during initially thawing. the process
only happens on the neighborhood of the end (x = 0) to be applied heat flux.
After approximate 80 seconds, the thawing process happens on total interface
between shell and frozen working medium, a moving interface as bullet
gradually forms. Fig. 3 shows the temperature fields in shell are higher than
in liquid region. However, the temperature gradients on shell are less than on
liquid region. Main temperature drop happens in liquid region. The same
results are also shown in Fig. 4 on the basis of the density and distribution of
isothermal lines. In thawing process, there is clear two-dimensional character
near both ends. However, except for the ends, the thawing process mainly
follows y-axis for a long time. The development of thawing process along X-
axis is very slow. These numerical results are accordant with experiment

observation results Bl

8 -
6 Shell
’g 4 T Water
~—— L
- 2
[ Ice
or
_2 o A A A i A e A
-5 5 15 25 35 45 55 65 75
X (mm)

Fig.1 The computational domain of the thawing process
in parallel channels heat pipe
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Fig.2 The variation of phase-change interface in the thawing process
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Fig. 4 Isothermal map at 386 seconds in the thawing process (the temperature
difference between both isothermal line is 6°C)

Thermal wave propagation in biological tissues

For the thermal wave propagation in spatial and in biological tissue, a very
few investigations were conducted until now. In this paper the DRBEM is
extended to simulate the two-dimensional thermal wave propagation in
biological tissues. In this case we assume the elevated temperature above
initial temperature fields as H(r,t):T(r,t)——T(r,O), in equation (1),
a=tla, b=(pC+W,C)IK, c=W,C, /K, d=-Q, +160,/51)/K.
Where, p, C, and K denote the density, the specific heat and thermal
conductivity of the tissue, respectively; C, denotes the specific heat of
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blood; W, blood perfusion rate; () heat generations due to spatial heat

source, respectively; T tissue temperature, and ¢ time. 7 is the thermal
relaxation time. The above-established numerical DRBEM algorithm is used
to solve equation (1).

The bioheat transfer problem in a two-dimensional square domain (Fig.5)
is taken as the studying object. In the calculation, typical thermal parameters
of living tissues are taken as p=1000kg/m’, K=Q5W/mK

C=C,=4200J/Kg *+ C, W, =0.5kg/m’ 5.
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Fig.5 DRBEM discretization domain
The boundary and initial conditions defined as (9(x,y € F;t)= 0°C,;

9(x,y;0) =1°Cfor -0.02m<x,y<0.02m, H(X,y;O) =( for other

xX,y; é(x,y;O) =Hx,,0)=0.

We first take the case with especially large 7 =1FE4s, which is high
limit of thermal relaxation time reported in some literature, and W, =0,
Q,=0. Fig. 6 shows the evolution case of a square temperature wave in
biological tissue. It is quickly resolved into four rhythmical thermal waves
with equal amplitude, and they further propagate reversibly. At time
t=5.796E3s, each wave has traveled a few distances but their later parts still
superpose together (Fig.6(c)) thus the core temperature is still the highest. At
this time, the four waves begin to strike the four sides of the boundary.
Calculations of Fig. 6(d)-6(e) show that, reflected from the rigid wall (i.e.
0 =0), the four waves will change their signs of @, showing a phase
jumping. These figures also show that due to the interaction of the reflected
waves and the incident waves, those results in the acute wave peak in body
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core as shown in Fig. 6(e). Later, the negative four waves will superpose on
the negative value to produce a large negative acute peak wave in the core
zone as shown in Fig. 6(f). Finishing superposition, waves will transfer
across each other, resolution and again travel toward the surrounding area.
The last figures depict the further reflection, superposition and resolution of
thermal wave. It can be seen that, the initially positive thermal wave can
change to the negative one and vice versa. The above results can be applied
to interpret an interesting temperature changing phenomenon observed by

Divrik et al '} and some other earlier authors.
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Fig.6 Square wave evolution in tissue when 7 = leds W, =0

In other examples, the low limit of thermal relaxation time reported in
references 7 =20s is chosen. The both case - Q. =0 and the changing

heating power are also accounted except for W, =0, respectively. Our

numerical computations show the thermal wave effect in tissue will be weak
to be observable when (). = 0. The greater parts of energy are propagated

such as the form of diffusion. However, when heating power is changed, the
heat transfer inside the body still shows distinctive wave properties.

Conclusions

The thawing process of frozen working medium in the modeling liquid
channel of the heat pipe gradually forms an axisymmetric moving interface

as bullet. Main temperature drop happens in liquid region.
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The higher the thermal relaxation time is, the stronger the thermal wave
effect will be in biological tissues. Under changing heat source, the effect of
thermal wave becomes more obvious.

The DRBEM is an efficient method for solving the heat conduction with
phase change (parabolic-diffusion equation) and the propagation of thermal
wave in biological tissues (hyperbolic-wave equation). The DRBEM is a
pure boundary integral method without domain integral and can be
developed as an universal BEM used to simulate more complex problems.
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