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Abstract

In this paper, the fast and adaptive calculation of large number of con-
secutive rolling contact problems is discussed. A special BEM method is
proposed for the solution of non-Hertz and conformal contact. The atten-
tion is paid on the appropriate choice of the potential contact area so that it
contains completely the real contact area while it is as small as possible to
reduce computing time, on good initial estimation to speed up convergence,
and on the adaptability to various possible geometry and loading situations.

1 Introduction

Rolling contact occurs in wheel-rail systems, bearings, gears,
printing machines. In rolling contact wear and corrugation analysis,
and in rail vehicle system dynamical analysis, large number of fric-
tional contact problems must be solved one after another in consec-
utive sequence with different contact locations, geometries and loads
which may change dramatically, therefore the solution algorithm must
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be very fast, adaptive and robust, and must be able to solve various
problems arising from various possible situations.

For three-dimensional rolling contact, analytical solutions are
possible only for very simple geometries and few limited loading
cases[1]. In most practical situations, numerical solutions are sought.
Finite element method is very powerful in the sense that it can solve
for many geometries, but it is slow and the meshing is more com-
plicated, which render it impractical for the above purposes. In this
respect boundary element method is an attractive choice.

A general formulation is developed by Kalker[2] for rolling con-
tact and implemented in the program CONTACT in a special bound-
ary element method for concentrated non-Hertz contact problems
with Boussinesq-Cerruti half-space analytical solution as the influ-
ence function. Li and Kalker [3] extended it to conformal contact
with finite element results for the influence number.

Explicit multiple point rolling contact, which is the contact with
more than one separate sub- contact area found from rigid body geo-
metry, has be applied in vehicle dynamical analysis and wear simula-
tion either by considering each sub- contact area as a Hertz contact
problem, solving them separately, and then adjusting iteratively the
total loads distribution among the sub-areas until the total force equi-
librium is satisfied[4], or by modelling each sub-area as Hertzian and
then reduce them to one equivalent contact problem([5]. There are
some problems with those methods: firstly the sub-areas are often
non-Hertz, secondly the cross-influence of the elastic fields between
the sub-areas can not be taken into account, and thirdly the con-
tact points are found from rigid body geometry, hence often missing
‘implicit” multiple point contact which may take place due to elastic
deformation.

Solution of large number of rolling contact in consecutive se-
quence has been applied in rail vehicle dynamical analysis, wear and
corrugation simulation for some years[6,7], but all the methods are of
Hertz type. Though non-Hertz contact is common in reality, it is not
employed because of its long computing time and unknown contact
area: for Hertz contact the shape and size of the contact area are
analytically available and the normal pressure is easily known, which
makes the trend of tangential solution predictable and the discretiz-
ation easy.

In the present paper a mathematical modelling of rolling contact
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and its discretization in BEM mesh are first briefly introduced, then
a solution procedure is described which can automatically find one
point contact, explicit and implicit multiple contact, adapt the dis-
cretization mesh, initial estimation and solution methods to the vari-
ous geometries and load conditions, and solve the problems quickly
in the non-Hertz manner. Finally some results are given.

2 The Modelling of Rolling Contact

A general variational formulation for rolling contact is proposed
by Kalker[2]. Tt is expressed in the form of the maximisation of
complementary energy in elastostatics, without body force, in surface
mechanical form:
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where p and u are the surface traction and displacement difference,
Apq and Ap, are the surface areas on body a (a = 1,2) where trac-
tion (p; = p;, i = z,y,2) and displacement difference(u; = u;) are
prescribed. A, is the potential contact which should include com-
pletely the real contact, T denotes tangential direction and ’ denotes
previous time step, W is the relative displacement due to rigid body
microslip, % is the undeformed distance,

h=ho-gq (2)

in which hg is the rigid body distance between corresponding elements
at their centres when the bodies are in touch but no deformation takes
place, and ¢ is the approach(compression).

Rolling contact is a local phenomenon, we drop in (1) p; and @,.

3 Discretization

Discretize A. into a mesh of equal rectangles with M X rows and
MY columns, each element with dimension Dz, Dy and area dS, (1)
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can be reduced into the normal problem:

Ar.g- DJz dS + hr+ Arzgr Pir dS = e (3)

and the tangential problem:

AITJO’ Pla s + WIT - ullr + AITJz Diz s = —wyr pIT/lpI‘rl (4)

where Ay;j; is the influence number[2,3], e is the deformed distance
and wy is the microslip distance.

4 The Solution Procedure

The normal and the tangential problems are solved separately
in an iterative process. Kalker’s active set algorithm [2] is employed.

4.1 The Search for Initial Contact Points

In the rolling direction, the surface of one of the contacting bod-
ies in the vicinity of the contact areas is circular or quadratic and
the other can be regarded as flat, they are of arbitrary profiles in the
lateral direction. The bodies are subject to translational and rota-
tional motions in space, but their relative motion is constrained by
each other. The initial contact points are found by searching for the
minimal distance between them with the requirement that at these
points the outer normals of the contacting surfaces should coincide.
A direct application of this requirement to the search would be time
consuming since the search is carried out two dimensionally.

However if we fix the coordinate system on the surface that is
flat in the rolling direction with the z axis pointing in the rolling
direction, z being the outer normal and y pointing laterally, an ana-
lytical representation of the curve on which the outer normal of the
surface is parallel to the yz plane can be found on the surface of
the other body and contact can only take place on this curve. In
this way the search dimension is reduced to one and for continuous
smooth surfaces their normals will coincide at the minimal distance
points on this curve.

4.2 The Various Situations

There are various geometry and loading situations, choice is made
according to their nature during the analysis.
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Concentrated Contact

In concentrated contact the surfaces of the contacting bodies are
flat or almost flat in the vicinity of the contact area and the size of the
contacting parts of the bodies are large with respect to the contact
area. Half-space influence number can be employed with satisfactory
results.

Conformal Contact

For conformal contact, half-space influence number may not be
applicable and analytical influence function may not be available.
Finite element solution is employed [3].

The discretization and the computation by FEM appears much
more time consuming than the complete solution of a contact problem
by BEM. But since the geometry of rolling contact bodies do not
change much during their life of use, once the influence number is
ready, it can be used for all the conformal contact problems of such
bodies.

Multiple Point Contact

The search in section 4.1 is carried out with the bodies being
taken as rigid. The result may be one point, multiple points or a
line. The multiple-point contact thus found is called explicit. In
many applications, for instance in wheel-rail contact, explicit multiple
contacts exist theoretically only for special relative positions of the
contact bodies, it needs very short search interval to find them, while
implicit contacts occur due to elastic deformation around the explicit
multiple contact locations in large regions. Hence it is more important
to find and include the possible implicit multiple contacts. In this
work, it is achieved by an appropriate choice of the potential contact
area. The multiple contact problem is solved as non-Hertz in one
potential contact area, the cross-influence is automatically taken into
account.

Loading Manners

The loads can be given in different combinations of total forces
components, rigid body microslip components and displacement. When
total force components are prescribed, the additional corresponding
total force equilibrium equations to (3) and (4) must be satisfied:

SpredS = F, (5)

Fy = prycosé;dS — py. sind; dS (6)
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F. = pp;cosd; dS + ppy sind; dS (7)

where d; is the angle between the normal of element I and F;.
Result Possibilities

Equations (1) are formulated for transient rolling. If in the cal-
culation of u/ the traction is set the same as that of the current
time step, while the corresponding influence number is for the pre-
vious step, the solution is for steady-state. The solution can also be
required for normal, tangential problems.

4.3 The Solution of The Normal Problem

The normal equations are linear, they can be solved by Gauss
elimination with LU decomposition.

4.3.1 The Choice of The Potential Contact A,

The potential contact area should include the real contact area
completely, at the same time it should be as small as possible to re-
duce computing time.

A choice of potential contact for individual non-Hertz problem
can be facilitated by test runs, which is not possible during a simu-
lation.

A usual way is to assign directly an area around the initial con-
tact points as the potential contact. It may be made to a reasonable
size according to experience, as is often the case in test run, and/or
according to knowledge of relationship between the sizes of contact
areas and the loads from previously computed cases. This still has
the possibility to exclude some sub- contact areas when they are rel-
atively widely distributed while attempt is made to minimize A..

In the present work, the undeformed distance h is used: the area
where h < h. is chosen as A., where h. is obtained from information
of previously computed cases.

In this way, when approach ¢ is given, the choice of A, is simple.
More often is that the normal force is prescribed. In such cases, ¢ is
an unknown, the normal equations are solved iteratively for it. To
start the iteration an initial estimation of ¢ must be made. On the
other side, the first ¢ obtained from solving the normal equations is
inaccurate if the estimation is not good. Because ¢ has very sensitive
effect on the size of the contact area, the contact area thus obtained
can often be much greater than the real one. As the computing time
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is O(N2) (N, is the total number of elements in the contact area),
this leads to significant increase in computing cost. To overcome this,
the following method is employed: ,

q is estimated from ¢ = k, (F.)3, where k, can be obtained
from previously calculated cases. This ¢ is then used to determine
the extent ¢, of the contact area in the lateral direction together with
the undeformed distance h. On the other hand, the extent of contact
area in z and y direction ¢, ¢, are proportional to (FZ)%, since now
cy is determined, ¢, can also be determined approximately in a sim-
ilar manner as q. The potential contact area thus decided in most
cases is very close to the real contact area, and since it is decided
on the basis of undeformed distance, it includes the real contact area
completely.

4.3.2 The Initial Estimation

Good initial estimation can significantly accelerate the compu-
tation. For Newton-Raphson process when it is close to the solution,
quadratic convergence is expected. To use the previous case as the
estimation, the discretization is kept unchanged whenever possible.

For some cases, say for the first case, or during transition from
one point contact to multiple contact or vice versa, good estimation
from previous case is not possible, then multi-grid method is em-
ployed, the program start with a coarse grid for an estimation.

4.3.3 The Minimization of Total Number of Elements

The accuracy of the solution depends on N.. To keep a balance
between the computing time and the required accuracy, effort is made
to limit N, around a certain empirical number N., which can be
decided based on experience or test runs. When N, deviates from
N too far, the discretization is modified and the normal problem is
solved again. This though costs some additional time, it is necessary
and beneficial because either the accuracy requirement is retained
or more time is saved in solving the tangential problem and in the
following cases.

It is noticed that for conformal contact, larger N, is necessary
to achieve the same accuracy.
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4.4 Solution of The Tangential Problem

The tangential equations are non-linear when some elements are
in slip due to friction law which requires that the direction of slip is
opposite to that of the tangential traction and that the magnitude of
the tangential traction should not be greater than the normal pres-
sure times the local coeflicient of friction. Two methods are employed
for the solution.

The first is Gauss elimination with LU decomposition and with
Newton-Raphson linearization. The timing is O(N2). It is robust,
with rare divergence. Should it occur, perturbation of the traction,
the discretization and the input almost always works.

The other way is to use Gauss-Seidel method. Each time the two
unknowns pr,, pry in one element are solved with Newton-Raphson
linearization. The timing is O(NN?). It is faster, but less robust.

Most of the cases can be solved with the Gauss-Seidel method,
whenever it does not converge, the Gauss elimination method is in-
voked.

For the tangential estimation, if the discretization is the same as
the previous case, the state of the elements (eg. in slip or adhesion)
and their tangential tractions are used.

5 Results

A typical wheel-rail contact is chosen for multiple point contact
(fig.1). The rail is fixed and the wheelset displaces laterally from its
central position y = 0.0. When the rail bottom cant is 0.0, the explicit
two point contact takes place at lateral displacement y = 6.91 mm,
but implicit two point contact occurs between y = 6.45 ~ 7.3 mm.
The results shown are computed from F. = 105 N, with the rigid
body microslip due to the geometry only. Single line denotes adhe-
sion areas, double line denotes slip areas.

The proposed solution procedure is implemented. To main-
tain the error below 10 percent, an average of 0.8 second is needed
on HP712 workstation for the solution of one complete steady-state
rolling contact problem including the search of the contact location.

This method is applied to wheel-rail wear simulation. For 1 mm
of material wear on the wheel profile, simulation by the proposed
method takes only one hour for high accuracy . The application of
this method to vehicle dynamical simulation is under way.
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Figure 1: Transition of implicit two-point contact

6 Conclusion

In wear and corrugation analysis, and in rail vehicle system
dynamical analysis, large number of rolling contact problems must
be solved with different contact locations, geometries and loads, the
solution method must be very fast, robust and adaptive to the vari-
ous possible situations. Boundary element method is suitable for this

purpose.

The proposed solution procedure incorporates different methods
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for various geometries, loads and initial estimation, and takes ad-
vantage of the information from previously computed cases for better
choice of the potential contact areas, and for initial estimation. The
solution methods are non-Hertz. The choice of potential contact area
by way of undeformed distance ensures that the real contact area is
completely included, even in the case of widely distributed implicit
multiple sub- contact areas, while the potential contact can be reas-
onably small to reduce computing time. Application of it to wear
simulation shows that it can adapt to the various situations, and is
fast and robust.
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