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Abstract

A new method for the simulation of free-surface flows driven by interfacial
tension gradients is discussed. The numerical method is based on a con-
tinuum model for interfaces and incorporates oct-tree adaptive refinement
of the underlying cartesian grid in order to track the interface without the
need for interface reconstruction. This method is then applied to the study
of thermocapillary motion of drops the presence of momentum and energy
convection.

1 Introduction

Flows driven by interfacial tension gradients have received considerable
attention during the past decade due to their significant impact on space-
based materials processing applications. Interfacial tension gradients re-
sulting from nonuniform distributions of temperature, surfactant concen-
tration, or charge density on an interface are known to give rise to un-
balanced tangential stresses which lead to fluid motion [1]. The resulting
motion can play a major role under microgravity conditions where sed-
imentation and buoyancy-driven convection are largely eliminated. For
example, it can provide a mechanism for the movement of drops and bub-
bles, as was first shown by Young et al. [2]. These authors derived the
following expression for the thermally-driven (thermocapillary) migration
velocity of a spherical drop of radius a in a constant temperature gradient,
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G, within an unbounded fluid medium:

(1)

24(90/0T) }

Uvap = - [#(n +2)(3A +2)

In this expression, ¢ is the interfacial tension, and & and A denote the
ratios of the thermal conductivity and the viscosity of the drop fluid to
those of the surrounding fluid, respectively. Equation (1) is valid so long
as the drop remains sufficiently small that convective transport of energy
and momentum can be neglected compared to molecular transport of these
quantities. Considerable progress has since been made in predicting the
thermocapillary migration velocity for systems in which convective effects
are significant, as summarized in a recent review article by Subramanian
[3]. However, most previous studies of convective effects in this problem
have been concerned with the motion of gas bubbles, and have assumed a
fized spherical shape for the bubble. Since the terminal velocity of a drop
or bubble can be strongly affected by its shape, it is important that drop
deformations be taken into account.

The development of efficient and accurate methods for the numeri-
cal simulation of such free-surface problems, including finite deformations
of the fluid-fluid interfaces, has received considerable attention recently.
Some examples include early contributions by Peskin [4], and Hirt and
Nichols [5], followed recently by Brackbill et al. [6], Unverdi and Tryg-
gvason [7], Haj-Hariri et al. [8], and Sheth and Pozrikidis [9]. In this
paper, we present a general numerical technique for simulating multiphase
flows involving nonuniform distributions of interfacial tension at fluid-fluid
boundaries, and we apply this method to the study of thermocapillary
motion of deformable drops in the presence of convective transport of mo-
mentum and energy.

2 Governing equations and numerical tech-
nique

Consider the thermally-driven motion of a deformable drop in an un-
bounded incompressible Newtonian fluid. The difficulty in treating this
problem lies in the a priori unknown location of the drop surface, and the
intimate coupling between the evolving temperature distribution and the
unknown drop shape, even in the absence of convective effects. This cou-
pling is taken into account by using the idea of continuum modeling of the
interface between the drop and the surrounding phase [4, 6] The continuum
surface model is based on the “volume-of-fluid” (VOF) approach of Hirt
and Nichols [5], wherein the free surface information is retained by advect-
ing a Lagrangian invariant called the VOF or color function. However, it
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still requires the costly step of interface reconstruction at every time step
in order to overcome the numerical diffusion caused by the relatively coarse
underlying uniform cartesian grid. In the present work, an adaptive local
grid-refinement scheme is integrated into the continuum surface model to
eliminate the need for interface reconstruction. We further incorporate
temperature-induced variations of interfacial tension into the model and
modify it to allow for the simultaneous solution of the momentum and
energy equations.

An important observation based on our numerical results is that the
continuum model based on a passively advected color function suffers from
the secular loss of integrity of the free surface under conditions where the
induced interfacial velocities wash the color function away from the inter-
face. Free-surface problems involving the motion of drops and bubbles are
specific examples where such conditions are encountered. This deficiency is
addressed by using the level-set idea of Osher and Sethian [10] in a manner
similar to that used by Sussman et al. [11], namely by passively advecting
a function s(x), denoting the normal distance from the interface (s = 0),
in the flow field. The small gradients of this function (level set) make the
advection process simple. Following Peskin [4], the color function C' is then
defined as a mollified Heaviside step function based on s, ranging in value
from 0 in the ‘interior’ to 1 in the ‘exterior’, with a sharp gradient over a
thin ‘interface region’. The selected thickness of the smeared interface will
depend on the desired/available resolution. Based on the level-set func-
tion, the surface normal can be generalized as n = Vs, so that the stress
jump, f, across the interface, given by

Oo

f:K—a_T) (I—nn)-VT +onV - n|, (2)

may be replaced by its volume-distributed counterpart, F, defined as
F =fé(s)=f|VC], (3)

where 6(s) is the Dirac delta function.

Including the smeared body force F given by eqn [3], the dimensionless
momentum and continuity equations in the presence of interfacial tension
take the following forms:

Ou

1
-a—t+u-Vu—%[—Vp+F+V‘(qu)], Vou=0. (4)

The solution of the flow problem also requires a knowledge of the temper-
ature distribution which is governed by:

oT 1 :
Sy T VT = 2=V (aVT), (5)
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The physical variables in these equations are nondimensionalized using the
following scales:
—orGa a P — Lez U™

" pezU™
x«__ 4= * t* - F —
U . T*=Ga iC ; 2

The resulting dimensionless parameters are the Reynolds, capillary, and
Marangoni numbers defined as Re = —o7G a*/pezver, Ca = —o7Ga/o,,
and Ma = —o7G a?/ ez ez, Tespectively, where o, and or represent the
interfacial tension and its variation with temperature at some reference
temperature. The dimensionless density, viscosity, and thermal diffusivity
distributions in eqns [4] and [5] are defined as,

p=Lror-0) p=trcra-0) a=Zc+-0).

ex Hex Qer

The basic numerical algorithm for the solution of eqns [4] and [5] is the
splitting method consisting of the two steps shown below:

u* - un n n 1 n n
T =WV [V (e 4 ) [6]
u™tt —u* 1 1
= -Vp" F| .

where the body force F is decomposed into normal and tangential compo-
nents F,, and F,, respectively, given by

F.= 2[VCV.n  F=[V0|I-nn)-VT. 3

The incompressibility of the velocity field at time step n + 1 leads to the
following poisson equation for the pressure,

e 1
v. [invpn“] - %v w4V [;};Fz} . [9]
Following each solution iteration, the level-set function is allowed to prop-
agate passively in the computed velocity field, the deformed shape of the
drop is determined, and the color function is reconstructed.

The method described above is not at its best if implemented with in-
adequate resolution. This was shown by Haj-Hariri et al. [12] who used an
analytically tractable model problem to examine the effect of the smearing
of fluid properties and interfacial force on some global variables of the prob-
lem, namely the interfacial velocity (analogous to the migration velocity
here). That study indicated a much stronger dependence of the solution
on the smearing of the interfacial force as opposed to that of the other
fluid properties. Hence, there is a vital need for enhanced resolution in the
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Figure 1: Thermocapillary migration velocity vs. viscosity ratio

implementation of the aforementioned formulation. In order to minimize
the computer storage requirements while achieving the desired accuracy,
an adaptive local-refinement of the underlying grid was implemented. An
important consideration in adaptive schemes is the data structure. In this
study, an oct-tree data structure is used wherein ‘parent’ cells are refined
by division into eight ‘child’ cells. The criterion for refinement of the carte-
sian grid cells is based on the gradient of the color function C, leading to
grid refinement only in the vicinity of the interface. Furthermore, a smooth
transition from large cells to small cells is ensured by prohibiting more than
a one-level difference between the refinement level of adjacent cells.

3 Numerical results

Several simulations with different values of Re, Ma and Ca are performed
to check the effect of these parameters on the deformation of the drop. To
avoid the loss of integrity of the interface due to diffusion errors, the level
set s is advected instead of the sharply-varying color function. The color
function is then redistributed based on the new interface location. For
all cases considered, the drop to suspending fluid density, viscosity, and
thermal conductivity ratios were fixed at 0.6, 0.7, and 0.1, respectively.
The variation of the computed thermocapillary migration velocity with
the viscosity ratio, A, for several values of the thermal conductivity ratio,
& is shown in Fig. 1. These results correspond to simulations performed at
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Figure 2: Adapted grid for drop migration (He = 1)

small values of the dynamic governing parameters specified as Re = 1072,
Ma = 107*, and Ca = 7.4 x 107%. The computed migration velocities are
in excellent agreement with the analytical results given by equation (1),
with errors less than .5%. For these values of the dynamic parameters, the
effects of convective transport of momentum and energy are negligible and
the drop remains nearly spherical. The computed velocity field also agrees
with the analytical results (e.g. Haj-Hariri et al. [13]).

Increasing the Marangoni number alone does not seem to lead to any
substantial deformations at Re = 0, even for capillary numbers on the
order of unity. Hence, we consider instead the effects of the convection of
momentum by letting Re = 1. The migration velocity for a spherical drop,
in the limit of vanishing Re and Ma, is found from Eq. (1) to be 0.232.
The perturbation analysis of Haj-Hariri et al. [13] predicts a reduction of
the migration velocity, as well as an oblate-spheroidal drop shape. Both of
these trends are confirmed by the simulations. Figure 2 contains the final
adapted grid for the slightly deformed drop. The calculated migration
velocity of the deformed drop is 0.180. Performing the same simulation
while constraining the drop shape to remain spherical, the reduction in
the migration velocity was found to be 40% less (to a value of 0.203).
Therefore, the shape of the drop has a strong influence on its mobility,
emphasizing the need for powerful simulation methods that account for
finite deformations of the drop shape.
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Figure 3: Isotherms for a bubble at Ma = 100.

Finally, fully three-dimensional simulations of the thermocapillary mo-
tion of a deformable bubble (very small, but nonzero, property ratios) with
Re =1 are performed for various values of the Marangoni number. The de-
pendence of the migration velocity on Marangoni number is demonstrated
in Table 1, and a representative isotherm contour (Ma = 100) in a vertical
cut through the domain is given in Fig. 3.

| Ma = [ 1 ] 10 [ 100 [1000 ]
Present results | 0.48 | 0.36 | 0.23 | 0.19
Reference [14] | 0.48 | 0.36 | .24 17

Table 1. Dimensionless migration velocity vs. Ma, for Re = 1.

The computed migration velocities for Re = 1 seem to be nearly the same as
those reported by Balasubramaniam and Lavery [14] for the nondeformable
axisymmetric problem.
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