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Abstract

In this paper, the basic ideas described in [4] is greatly generalized to give
a kind of high-order BEM formulations for strongly non-linear problems
governed by quite general differential operators which may NOT contain
any linear operators at all. As a result, the traditional BEM which treats
the non-linear terms as the inhomogeneities is only a special case of the
proposed BEM. One simple example is used to illustrate its effectiveness

1 Introduction

Although BEM is in principle based on the linear superposition of fun-
damental solutions, many researchers have applied it to solve non-linear
boundary-value problems governed by the non-linear differential operator
A:
Alu) = f(7). (1)
If this non-linear operator A can be divided into two parts Lo and
MNo, where, Ly is linear, A is non-linear and A = Lo + Ay holds. Then
traditionally, writing the original equation (1) as Lo(u) = f — No(u), we
can obtain the following equation of integral operator

o(FYu() = / [u Bo(to) — wo Bo(u)] d T + / = No(w)] wod @ (2)

where, wy is the fundamental solution of the adjoint operator of the linear
differential operator Lg, By is its boundary operator, I' denotes the boundary
of the domain Q. Note that the domain integral of above equation contains
the unknown function u(7) so that iteration is necessary.
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This traditional BEM described above has the following restrictions:

1. Many non-linear differential operators do NOT contain any linear op-
erators at all, i.e., A = Lo+ N, does NOT hold, so that the traditional
BEM is useless in this case.

2. Even if non-linear differential operator A contains such a linear oper-
ator Lo, Lo may be so complex that its fundamental solution is either
unknown or unfamiliar to us.

So, it seems necessary to develop a kind of new BEM for quite general
non-linear problems,

(I) which should be suited to equations governed by quite general non-
linear differential operators which may NOT contain any linear oper-
ators at all;

(IT) which should give us great freedom to select a proper linear operator
whose fundamental solution is familiar to us, no matter whether the
linear operator Ly exists or not;

(II1) which should contain logically the traditional BEM.

In this paper, the basic ideas described in [4] are greatly generalized
to give a new quite general BEM for strongly non-linear problems. One
simple example is used to illustrate the effectiveness of it.

2 The Basic Ideas of the Proposed BEM

We consider again the equation (1). Selecting a proper linear operator
L whose fundamental solution is familiar to us, we construct a homotopy
v(7,p) : Q x [0,1] — R, which satisfies

L(v) = (1 —p) L(uo) +p [L(v) = A(v) + f] ; pel01], ()

where, uo(7) is a free selected initial solution, p € [0,1] is the imbedding
parameter, v(7, p) is now a function of both p € [0,1] and 7 € Q. We call
the equation (3) the zero-order deformation equation.

Obviously, from equation (3), the following two expressions

U(F,O) = uO(F)v (4)
o(F 1) = u(F), (5)
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hold, where u(7) is the solution of equation (1). Therefore, uo(7) and u(7}
are homotopic, denoted as v(7, p) : uo(7) >~ u(7r). Assume that the “contin-
uous deformation” v(7, p) is smooth enough about p so that

9™ (7, p)

) 21»2733”" 6
o m )

o7, p) =

called mth-order deformation derivatives, exist. Then, according to the
theory of Taylor’s series, we have from (4) that
pm
(ﬁ>

)+ Z a (7, p)
m=1 p=0

a+z( )W )
(m]

where, vy™(7) is the value of vI™)(7 p) at p = 0, which can be obtained in
the way described later. For simplicity, we call above expression Taylor’s
homotopy series. The value of the convergence radius p of the serie (7) is
generally finite. So, in case p < 1, we have

o [yl
(7, \) = uo(F) Z[ })\’", (8)

m=1

v(7,p)

where, 0 < A < p < 1. Note that v(r,\) obtained by above expression
is mostly a better approximation than the initial solution uo(7) so that
expression (8) gives a family of the high-order iterative formulations:

= [
uk+1(7_")——uk7f)+z I: :l (k:0v172»"')7 (9)

Differentiating the zero-order deformation equation (3) m times with
respect to the imbedding parameter p and then setting p = 0, we obtain
the mth-order deformation equations at p = 0 as follows:

LOM) = ful) (m>1), (10)
where
AH(F) = = A(w), (11)
_ -1y, d"TTA(v)
fm(7) = m{ﬁ(vo ) — p pzo} (m>1). (12)

Note that fi(7) is the minus residual of the original equation (1) and is the
same for ANY linear operators £ suited to the proposed BEM.
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Then, according to (2), we have the corresponding boundary integral
equation

(PN = /r [v},'"l B(w) — wB(v([)m])] dT + /Q frwdQ.  (13)

Note that we have now great freedom to select a simple, proper lin-
ear operator £ whose fundamental solution w is famaliar to us, no matter
whether the considered non-linear problem contains linear operators or not!
Especially, if A = Lo + Ny holds and we select £, as the linear operator,
the formulation (13) in case m = 1 gives the same expression as the ex-
pression (2). Therefore, the three demands (I) (II) (III) listed in the first
section are completely satisfied.

3 One Simple Numerical Example

In order to illustrate the effectiveness of the proposed BEM, let us consider
such a non-linear boundary-value problem which does NOT contain any
linear operators at all :

2¢V= sin(U,,) + a (U + U2) = a— e @ sin(sin(z))
z € [0,27],a > 0, (14)

with the two boundary conditions U(0) = U(27) = 0.

We use respectively the following two sorts of linear operators

MODE 1: £,(U) = U,y — U B>0,
MODE 2: Ly(U) = U + B2U  B>0,

to construct the corresponding zero-order deformation equation

L,(V) = (1=p)Ly(Uo) +p{Ls(V) = AV) + f},
ze[0,2r]  pel0,1) (v=1,2) (15)

which has the two boundary conditions V(0,p) = V(27,p) = 0, where,
A(V) = 2e"=sin(Vzr) + « (V2 + V2), f(z) = a — e~ 5@ sin(sin(z)),and
V(z,p) : [0,27] x [0,1] — R is a kind of homotopy, Us(z) is a selected
initial solution satisfying the boundary conditions Ug(0) = Up(27) = 0.

Similarly, we can obtain the corresponding high-order iterative formu-
lations

Myl
Uk+1(:c)=Uk(:z:)+Zu)m!—m, (k=0,1,2,---),  (16)

m=1
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Table 1: iterative times of example 1 for different «

a A MODE 1 | MODE 2

0 0.25 14 11
0.25 0.20 9 21
1.00 0.10 19 43
5.00 0.025 45 59
100 | 0.00125 233 228
1000 | 0.000125 356 350

where, V™ (z) satisfies the linear differential equation
L, (Vi) = fnla),
with the two boundary conditions V™ (0) = V™ (27) = 0. Here,
filz) = a—e " sin(sin(z)) — A(Us), (18)
hle) = 2{ L, (W) = 267 [sin(Us) + cos(Ur)] UL
—2a (VUM + U,UM) }|

z € [0,2n] (vy=1,2, m=1,2,3---) (17)

p=0"’

The solution Vo[m}(:c) of above linear equation can be easily obtained:

2T
Virl(2) = Couwr(2,0) = Dyiwn (2, 27) + / w(z,2") fm(a)d ', (20)

where,
wl(x,z') = —%e'ﬁlr—rll, (21)
1 .
wo(z,z’) = —%sin(mz—x'“, (22)

are the fundamental solutions of MODE 1 and MODE 2, respectively. The
two coefficients C,, and D,, are determined by the two boundary conditions
V() = vi™ler) = 0.

For the sake of numerical domain integral, we divide [0,27] into N
equal subdomains ( N=500 ). We simply select 42 = 0.1 and use Up(z) =0
for all values of a. Certainly, the solution of equation (14) is a function
of «, shown as Figure 1, from which we can see clearly the “continuous
deformation” of the solution with respect to a. The corresponding iterative
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Figure 1: The solutions of equation (14) for 0 < a < 1000

Curve 1 : a =0.0
Curve 2 : a = 0.25
Curve 3: a=1.0
Curve 4 : a =5.0
Curve 5 : a = 1000
centered symbols : S(z)

times and the values of A used for the different o are given in Table 1. It
should be emphasized that, although the non-linear equation (14) does NOT
contain any linear operators at all, we still obtain the convergent numerical
results by using respectively the two different linear operators £y and L,!
Note also that the solution in case a = 1000 is very close to the real function

—sin(z) when z € [0, 7/2],
S(z)=4 -1 when z € [r/2,37/2], (23)
—sin(2r — z) when z € [37/2,27],
shown as Figure 1. This result is reasonable, because S(x) is certainly
a solution of equation (14) in case « tends to infinity. Therefore, we have

many reasons to believe that what we have obtained are indeed the solutions
of equation (14) for 0 < o < 1000.

We can simply compare the proposed BEM with that given in [5].
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Similarly, a one-dimentional non-linear equation U,, = aU? (z € [0,1])
with the two boundary conditions U(0) = 1,U(1) = 0.25 has been used in
[5] as one simple example: the domain is firstly divided into N subdomains
and then the non-linear equation is linearized in each subdomain. As a
result, a set of 2N algebraic equations is needed to be solved which needs
certainly much CPU, if N is large, for instance, N = 500, as used in this
paper. But, the proposed BEM needs only solve a set of TWO algebraic
equations about the two unknown coefficients at each iteration. Therefore,
the proposed BEM seems much more efficient than that given in [5].

Our computational tool is COMPAQ Prolinra 4/50 and double pre-
cision variables are used. In this paper, we use two kinds of convergence
criterion

S (AU - f=)) s
RMS, = \/ N <10 (24)
and
RMS, = ZZOI(SU(I')P’ 10—5 (25
2= Nyl < )

Iteration will be stoped if either of them is satisfied.

4 Conclusions and Discussions

In this paper, the basic ideas described in [4] are greatly generalized to give
a kind of new Boundary Element Method (BEM) for quite general non-
linear differential operators which may NOT contain any linear operators

at all. This kind of new BEM has the following advantages:

(A) it can be used to solve those non-linear problems which do NOT con-
tain any linear operators at all;

(B) in any cases, we have great freedom to select a sort of proper and
simple linear operator £ whose fundamental solution is familiar to us,
especially when Ly does not exist, or when Lg is so complex that its
corresponding fundamental solution is either unknown or difficult to
be obtained;

(C) the traditional BEM is only a special case of the proposed BEM so that
there exists a kind of logical continuation between the traditional and
the proposed BEM. This kind of logical continuation has been proved
again and again to be very important in many fields of mathematics.

One simple example is applied to illustrate the effectiveness of the
proposed method, which indicates that the linear operator Lo, which is
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corresponding to the linear terms of the considered nonlinear problem and
is very important for the traditional BEM, has now no special meaning
at all — it is nothing but only a very common one of many proper linear
operators suited to the proposed BEM. It illustrates also that the proposed
BEM can give very good numerical approximations of a nonlinear problem
which does NOT contain any linear operators at all, even in case that the
nonlinearity is very strong! Note that we have now great freedom to select a
proper and simple linear operator, whose fundamental solution is familiar to
us, for the proposed BEM. Certainly, the greater freedom means the better,
this is exactly the reason why the proposed BEM seems to be superior
to the traditional one. However, how can we use this kind of freedom ?
That is to say, how can we know a selected linear operator is proper and
is better than another one ? Certainly, for any a non-linear problem, there
should exist many proper linear operators suited to the proposed BEM,
all of which would construct a mathematical space S. It seems that there
should exist the best linear operator in the space S. But how to find out
the best one ? Unfortunately, we know now nearly nothing about these
interesting questions. Therefore, some deep mathematical researches are
necessary. On the other hand, although this example has indeed illustrated
the effectiveness of the proposed BEM, it seems to be too simple ( a more
complex example about 2D viscous flow has been given in [4]). So, the
proposed BEM must be applied to solve more complex 2D and 3D non-
linear problems in engineering so as to examine and improve it.
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