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Abstract

In this paper the Analog Equation Method, a BEM-based method, is
employed to establish the differential equation governing the behaviour of
a physical system for which the source (input) and its response (output)
are known. We come across to such cases in the effort to identify
constitutive laws of materials including constant or spatially varying
parameters (non-homogeneous materials), or constitutive laws depending
non-linearly on the unknown field function and/or its derivatives. Certain
example problems are presented which validate the efficiency of developed
procedure. Among them, temperature distribution problems in non-
homogeneous bodies or in bodies with temperature dependent thermal
conductivity as well as non-linear steady-state flow problems governed
Burgers' equation.

1 Introduction

The Analog Equation Method (AEM), developed recently by Katsikadelis
[1], has been successfully employed to solve a series of problems arising in
engineering discipline, such as linear and non-linear potential problems in
non-homogeneous or non-linear bodies, linear and non-linear plate
problems [2,3], non-linear vibrations of plates [4], plane stress problem in
bodies with constant [5] or variable thickness [6] and finite deformation of
cables and cable structures [7]. In this paper AEM is employed to establish
the differential equation governing the behaviour of a physical system for
which the source (input) and the response (output) of the system are
known. The dominant part of the differential operator or at least its order
is known from general physical principles, while the remaining part of the
operator or some of its coefficients, constant or spatially varying may be
unknown. We deal with such problems when we try to establish a
mathematical model predicting the behaviour of a system or to determine
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the constitutive laws of new materials or when we are interested to
transfer experimental results from the model to the real structure in non-
linear responses (scaling in non-linear mechanics). It must be emphasised
here that the recently developed highly efficient computational methods,
FEM and BEM, can solve the differential equations describing the
behaviour of a system with great accuracy. However, the question that
arises is whether the differential equation describes the behaviour of the
system reliably. Thus, the identification of a physical system plays an
important role in the investigation of its actual behaviour. The
establishment of a physical law from experiments on specimens do not
always give reliable data. If, for example, the boundary conditions
(support and loading) of the specimen are altered, the obtained results
may be different. On the other hand, if the experiments are performed on
the system, the obtained physical law is more reliable, as it is derived from
its global response. It is in this context that this method is proposed. The
presented numerical examples validate the efficiency of the method.

2 Problem statement and analysis

Consider the boundary value problem

Nu)=0 in Q Q)
B(u)=u on T 2

where N(u) is an elliptic differential operator and B(u) are admissible
boundary conditions.
If N(u) is of the second order with linear dominant part, then Eqs(1,2)

may be written as

au,, +au,, +asu, + f(uu,,u,)=0 inQ 3)
1% xx 2%xy 3%y y

u=u onlI; and u,=u, onl, @

x>

where «; =a;(x,y), (1=1,2,3) and f(u,u,,u,) are unknown

functions to be specified from a given set of solutions (as many as they
will be required) of the problem (3,4) obtained perhaps experimentally.
The function f(u,u,,u,) is in general non-linear and can be sought in

the form of a polynomial series, i.e.

X

S (u,uyuy,) =bogg +bygott + by, +booiy,
+hyoott? +bysgtt? + by’ 5
2004 0204x T 0p02U,y, )

+byyouu, +byguu, +bog uu, +...
where b = b,y (x,y) are unknown coefficient functions.
Thus, Eq. (3) is written as
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au, tayu,, tasu, +byoo + D100t + byt + bomuy
2 2 2
+b1 louux + blmuuy + bomuxuy+. = 0

If the function f(u,u,,
terms in Eq. (6), the functions a;(x,y) and b, (x,y) can be established

uy) is approximated by a finite number of

as following.
Let n be the total number of the unknown coefficient functions
ai,bjkg. Suppose that we have n solutions of the problem (3),(4),

u?, p=1,2,..n corresponding to n different sets of the boundary

quantity #. Then, substitution of these solutions into Eq. (6) yields a
system of equations from which the unknown coefficients can be
established.

The solution u” is given as a set of values at the nodal points of a
mesh on Q. Subsequently, the problem is to express all the derivatives
involved in Eq. (6) in terms the of values of the field function u. This is
achieved us by the Analog Equation Method (AEM) as presented in the
next sections.

3 The analog equation method

Let u=u(x,y) be the sought solution of Eq. (3) subjected to the

boundary conditions (4). If the Laplacian operator is applied to this
function, we obtain

Viu=gq(x,y) @)

Eq. (7) indicates that the solution of the problem described by Eqs(6) and
(4) could be obtained as the solution of this equation subjected to the
boundary condition (4), if the source density function g(x,y) were
known. The establishment of this unknown source density function is one
of the essential ingredients of AEM. This can be accomplished using BEM
as following.

The solution to the Laplace Eq. (7) is given in integral form as

eu(P) = fQ vqdQ — L_ (vu,, —v,u)ds ®)
where

v=iénr, r=|P-Q
2n

> Pilx.y), QS m ©)
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is a singular solution of

V2v=5(P—Q) (10)

and £=1, 1/2 or 0 depending on whether PeQ, Pel’ or PeQ,

respectively. The boundary is assumed smooth at point P. Q is the
closure of the domain.
Differentiation of Eq. (8) with £=1 yields

u,(P)=[,v,qdQ—- [ (v,u,—v,u)ds (11)
u, (P)=[v,qdQ= [ (v, u, = v, u)ds (11b)
U (P) = [V qdQ— [ (Vo th, =V, ) (11¢)
u,, (P)=[,v,,qdQ~ [ (v,,u, =V, u)ds (11d)
Uy, (P) = [V qdQ = [ (Vg t, = V) dls (11¢)

Theoretically, the boundary integral Eq. (8) (P €I') together with the
boundary conditions (4) permit the establishment of # and u, on the part
of the boundary where they are not specified in terms of gq. Subsequent
substitution into Eq. (8) (P €(2) permits the establishment of % in terms
of q. After that, Eqs(11) yield the desired derivatives in terms of q. The
foregoing procedure involves the solution of boundary as well as domain
integral equations which are solved numerically using the D/BEM as
following.

4 Numerical implementation

The D/BEM is employed. For this purpose the boundary is discretized in
N boundary elements while the domain into M cells. The discretized
equations are obtained from Eqs(11a)-(11e) using the boundary element
technique for the boundary integrals and the finite element technique for
the domain integrals. In the example problems studied in this paper,
constant boundary and domain elements have been employed. The
singular and hyper-singular domain integrals are evaluated using the
technique presented in [1]. The kernel integrals are evaluated by Gauss
integration. The discretized counterparts of Eqs(8),(11a)-(11e), when
applied at the nodal points, yield

{u}y =[ANq}p +[BNu}y +[CHu, }y (12
{ubps =[ANG}p +[BRu}y +[CHu, 3y (13a)
{ux}M =[Ax]{q}M +[Bx ]{u}N +[Cx]{un}N (]3b)

{uydae = A, 0{q) ar +[By Ky +[Cy Ny} v (139
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(e b ar =[ A Naha +[Bo Kud v +[Co Hut } v (13d)

{u){y }M =[Ayy]{q}M +[Byy]{u}N +[ny]{un}N (138)

{ug dre =[Ag Nada +[By Kupy +[Cy Kty by (13)
where

{u}n, {u,}y: are N x1 matrices including the boundary nodal values of
u and u,,.
{9} is an M x 1 matrix including the values of g(x,y) at the

domain nodal points.
{udars{uetar-{uy darso{ty, bas are M x1 matrices including  the

domain nodal values of

Uyl Uy sy Uy,

[4),[B],....[4], [B],...[C,,]: are known coefficients matrices originating

from the integration of the kernels along
the boundary elements and on the domain
cells.
Eqgs(12) together with the boundary conditions (4) permit the
evaluation of the not prescribed boundary quantities. Subsequently,
substituting these values into Eqs(13a) to (13f) yields

{u} =[Gl{q} +{D} (14a)
{u,} =[G, Hg} +{D,} (14b)
{u,} =[G, g} +{D,} (14¢)
{ty} =[G g} +{Dy } (14d)
{u,,} =[G, {q} +{D,,} (14e)
{uy } =[Gy NKg} +{Dy } (14)

where [G,[G,],...,[G,,] are M xM coefficient matrices and
[DL[D]),....[D,,] constant M x 1 column matrices. The subscript M has

been released from these matrices as they all refer to domain nodal values.

If the vector {u} is known at the nodal values, then the vector {q} can
be established in terms of {u} on the basis of Eq. (14a). Therefore, all
derivatives can be expressed in terms of the vector {u}.

For each {u?} (p=1,2,..n) we obtain a corresponding vector

Wl (ul),...

Collocation of Eq. (6) at the nodal points inside 2 and substituting
{u?} and its derivatives on the basis of Eqs(14a) through (14f), we obtain
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(ul May} +[uf, Wy} +[u) Has)
HIUbooo} + 1" Hbroo} +[1f Wboro} + (15 1{boo1} (15
+H{(uP)? Y {byo} + {(uf)z}{b020}+. =0

Eq.(15) for p=1,2,...n yields a set of M xn linear algebraic equations
which permit the establishment of {a, },{@, },{@3} and n—3 coefficients
of the polynomial series (5).

5 Numerical examples

On the basis of the procedure described in previous sections some example
problems have been studied to illustrate the efficiency of the proposed
method.

Example 1. Burgers' Equation

We consider experimental data of the velocity field with convection-
diffusion structure and containing the full non-linearity of the one-
dimensional flow. The steady-state situation of this flow with unit value
of Reynolds' number (Re = 1) is governed by the Burgers' equation, which
is derived from the Navier-Stokes equations by imposing certain
simplifying assumptions on them and has the form [8]

Viu—uu, =0 (16)

u is the velocity component in x-direction.

We consider a square with side length a = 1. Its boundary is discretized
into 60 constant elements (15 on each side), while the interior is
discretized into 10x10 constant square cells. The values of the velocity are
measured on the nodal points. They are obtained from numerical
experiments.

We assume that the flow is governed by an equation having the form

V2u+f(u,ux,uy,uxx,)=0 17

and we require to establish the function f(u,u,,u,,u,) from the

experimental data. This function is approximated as
2 2 2
S (u,up,u) = (b, +bu)u, +byus, +byuy, +bguy, (18)

The coefficients b, (k =0,1,2,3,4) are obtained from the data of five
numerical experiments by solving numerically Eq. (16), using AEM for
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non-linear potential problems [1], under the following five different sets of
boundary conditions.

- u(0,)=20 u(l,y) =30 u(x,0)=u(x1)=20+x

u(0,y) =20 u(l,y) =35 u(x,0)=u(x,1)=20+15x
L u(0,¥) =25 u(l,y) =30 u(x,0)=u(x,1)=25+05x
u(0,y) =25 u(l,y) =40 u(x,0) = u(x,1) =25+ 15x
. u(0,y) =30 u(l,y) =35 u(x,0) =u(x,1) =3.0+05x

o Ao o

This procedure yields the following set linear algebraic equations for the
evaluation of coefficient b .

_[uil)] [u(l) (1)] [u(l) (1)] [u(l) (1)] [ @ (1)] {bo} {q(l)}‘
[u£2)] [u(2) (2)] [u(Z) (2)] [u(z) (2)] [ (2) (2)] {b} {q(2)}
[u£3)] [u(3) (3)] [u(3) (3)] [u(3) (3)] [ (3) (3)] by} =1 {q(3)} +(19)
[u§4)] [u(4) (4)] [u(4) (4)] [u(4) (4)] [u(4) (4)] {by} {q(4)}
[u§5)] [u(S) (5)] [u(5) (5)] [u(5) (5)] [u(5) (5)] {b,} {q(S)}

N

where [ufrl)], [u(l)uil)],...,[ug)ug)] are diagonal matrices with dimensions

100x100.
The solution of Eqs (19) is presented in Table 1. As it was anticipated
the coefficients are b, = b, =~ b; = b, =~ 0 while b =~ ~1. Thus

f(u’ uX’ uy’ uxx) = _uux (20)

Table 1. Computed values of the coefficients b, in Example 1 at 10 nodal
points along the line x = y.

Point b b b b
Number ? b] 2 ’ 4

1 .156-06  -1.000 -.139-06 .577-07 -.159-06
12 .138-05  -1.000 -.446-05 .113-05 .325-05
23 15705  -1.000 510-06  .171-04  -.874-05
34 .570-06  -.999 .890-06 -.506-05 -.217-06
45 -.169-05  -.999 315-05  -.991-04 -.101-05
56 -.119-05  -.999 .469-05  .218-03 -.351-05
67 -.192-05  -.999 -.422-06 .107-03 .378-06
78 -.271-06  -.999 -.143-06  .106-05 .113-06
89 .263-06  -1.000 .119-06 -.204-06 -.700-07
100 .117-06  -1.000 .620-07 -.183-07 -.264-07
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Example 2. Determination of the thermal conductivity function in non-linear
bodies.

We consider a body in which the conductivity depends on the
temperature, i.e.

k= k(u) @n

The steady-state heat transfer in absence of heat sources is described by
the following differential equation resulting from Fourier’s Law

RV u+ ke, + kyu,=0 (22)

In this example, we want to establish the conductivity k(u) from

experimental data in a square two-dimensional body having side length
a=1. We use the same discretization as in Example 1. The values of
temperature » are measured on the nodal points. They are obtained from
numerical experiments on a homogeneous body with

k(u)=-2+001y, (23)
In this case, Eq.(22) becomes

Viu + 1
u—200

(W +u)=0 0<xy<l 24
We assume the following approximation for k(u)

k(u) = b, +bu+b,u* + by’ +byu’ (25)
Since the body is homogeneous b, are constant. Then Eq.(22) becomes

(b, + by +byu? +byu® +byu* YV u + (b, + 2byu + 3byu* + 4byu yu? 6
+(by + 2byu +3byu® + 4byu’yul = 0

In Eq.(26), the coefficient b, is arbitrary. Thus only the ratios b, = b, /b, ,
b,=b,/b,, by=by/b,, by=b,/b, can be determined. Thus, after
rearranging Eq.(26), we have
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@V +u? + uﬁ)gl +u(uV2u+2ul + 2u§)52
+ut (uV2u+3u? + 3u§ )b, 27)

+1 (uViu +4u? +4uf)54 =-V%u

The coefficients b, (k =1, 2, 3, 4) are obtained from the data of four

numerical experiments by solving numerically Eq.(24), under the following
four sets of boundary conditions.

a. u(0,y) =300, u(l,y)=400, u(x,0)=u(x1)=300+100x
b. u(0,y) =300, u(l,y)=420, u(x,0)=u(x,1)=300+120x
c. u(0,y) =320, u(l,y)=450, u(x,0)=u(x,1)=320+130x
d. u(0,y) =350, u(l,y)=480, u(x,0)=u(x1)=350+130x

Table 2. Computed values of the coefficients b—k in Example 2 at10 nodal
points along the line x = y.

Point A b b b

Number bl b2 b by
1 -.500-02 S16-11 .105-13 .810-17
12 -.500-02 .132-10 .260-13 .192-17
23 -.500-02 .498-11 .933-14 .652-17
34 -.499-02 -.109-10 .202-13 -.140-17
45 -.499-02 -.181-10 .322-13 -.214-17
56 -.499-02 -.143-10 .248-13 -.159-17
67 -.499-02 -.665-11 .110-13 -.689-17
78 -.499-02 -.790-12 .121-14 -.694-17
89 -.500-02 -.137-11 -.222-14 .135-17
100 -.500-02 .768-12 -.120-14 .705-17

Collocation of Eq.(27) at the interior nodal points yields a system of 4M
(M =100) linear algebraic equation for b, similar to that of Eqs(19),

from which the values the coefficients b, are obtained. The values of b,
at certain points are given in Table 2. As it was expected

b, =—0005, b, ~ by ~ b, ~ 0. That is
k = b,(1-0.005u) (28)

Example 3. Determination of the thermal conductivity in non-homogeneous
bodies

We consider a body in which the conductivity varies spatially, i.e. for a
two-dimensional body, we have
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k=k(x,y) (29

The steady-state heat transfer in absence of heat sources is described by
Eq. (22), which may also be written as

V2u+ (¢nk) o, + (enk),u, =0 (30)

In this example, we want to establish the conductivity function k(x,y) in

square two-dimensional body having side length o = 1. We use the same
discretization as in Example 1. The required experimental data are the
values of the temperature at the boundary and interior nodal points as
well as the values of thermal flux on the boundary. They are obtained
from numerical experiments on a material with

k(x,y) = e—o.l(x—o.S)2 G31)

In this case Eq. (30) becomes

V2u-02(x-05)u, =0 0<x,y<l (32)
We set
lnk =x(x,y) (33)

and we assume the following approximation in order to include possible
non-linearity.

k(x,y) =b, +bu+.. +b,u" (34)

Since the material is non-homogeneous the coefficients b, depend on the
position x, y, that is b, = b,(x,y). Substituting Eq. (34) into Eq. (30)
yields

Viu+ (box +by u+bu+. +b, W'+ nbu" ' u

X
(33
+(by, + by yu + by, +. b, " +nbnu"_1uy)uy =0

The temperature u and its derivatives are established from n numerical
experiments by solving numerically Eq. (32). Note that the derivatives b, ,

and b , appear in Eq. (35). They can be expressed in terms of b, using
AEM as presented in Sections 3 and 4. That is
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V¥, =g, in Q k=12,..n (36)
b, =prescribed on T’

where g, is a fictitious sources. The boundary values of b, can be

established from the corresponding boundary values of the thermal flux.
For the simplicity of computation, the numerical results have been
obtained for n =0, that is using only the first term in Eq. (34). On the
basis of Eqs(14), Eq. (36) yields

{b,} =[G, 1q,} +{D,} (37a)
{bo,x} = [Go,x]{qo} + {Do,x} (37b)
{b,,} =1G,, {q,} +{D,,} (379

Substituting Eqs(37) into Eq. (395) yields

()G, )+, )(G, y Do) = ~({Vu+[u, (D, ) +[u (D, ,})  (38)

The experimental data are obtained from the numerical solution of Eq.
(32) subjected to the following boundary conditions

u(0,y)=1, u(l,y)=2, u(x0)=u(x1)=1+x

The fictitious source {g,} is evaluated from Eq. (38). Then {x}={b,} is

computed from Eq. (37a). The computed values of x are presented in
Table 3 as compared with the exact ones. They are in good agreement.

Table 3. Computed values of the conductivity k = ¢nk
along the line y = 225

Point Computed Exact
Number
41 -.2025-01 -.2025-01
42 -.1224-01 -.1225-01
43 -.6252-02 -.6250-02
44 -.2246-02 -.2250-02
45 -.2494-03 -.2500-03
46 -.2494-03 -.2500-03
47 -.2246-02 -.2250-02
48 -.6252-02 -.6250-02
49 -.1224-01 -.1225-01
50 -.2025-01 -.2025-01
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6 Conclusions

In this paper the AEM has been employed in a class of problems, in which
the excitation and the field function describing the ensuing response of the
system are given and it is required to establish the governing differential
equation. The proposed method can solve many interesting problems in
engineering practice. Among them the establishment of the mathematical
model of systems, the constitutive laws of materials as well as the
development of structural analysis methods suitable to solve control and
optimisation problems in structural design.
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