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ABSTRACT
This paper might have a subtitle, ‘– homothetic node and element generation along boundary patches’,
with the justification ‘to simplify and speed up the numerical simulation’. We have recently laid down
the theoretical basis for the consistent formulation of the collocation boundary element method, as it
should have been conceived from the beginning. We proposed a convergence theorem for two- and
three-dimensional problems of elasticity and potential, which applies to arbitrarily curved elements in
the frame of an isoparametric analysis. We also showed that arbitrarily high precision and accuracy may
be achieved in the code implementation for two-dimensional problems – limited only by the machine’s
capacity to represent numbers. On the other hand, there still is the cost–benefit question – considering
that the mathematical governing equations are adequate for representing the physical phenomenon – of
how to improve a real problem’s simulation without increasing the number of degrees of freedom. The
first possibility is to increase the polynomial order of the interpolating functions (p-refinement). The
second possibility is with local, adaptive, h-refinement of the discretization mesh. We may also attempt
to optimize the geometric location – inside a boundary element – to which the problem’s primary
parameters are attached. Independently of that, an isoparametric formulation may fail to reproduce
the exact geometry of the idealized physical problem. Since, for two-dimensional problems, we have
the boundary element formulation under control regarding all numerical evaluations, we assess how
an isoparametric analysis – with the introduced elegancy of a convergence theorem – compares to a
formulation that preserves the problem’s idealized geometry but is not isoparametric, in general. We
present the conceptual formulation, code implementation, and numerical illustrations that go from the
simple case of an infinite plate with a circular hole to very challenging – physically unrealistic but
mathematically conceivable – topological applications.
Keywords: consistent boundary elements, collocation, isoparametric analysis, isogeometric approach,
node location optimization, homothetic mesh refinement.

1 INTRODUCTION
Our recent proposition of the ‘consistent’ collocation boundary element method (CBEM) has
required a long maturation time since the primitive proposal [1] of 30 years ago (Here, the
word ‘primitive’ may refer to ‘original, primary, crude or rudimentary’, but also to ‘seminal’,
as the concept of ‘complex singularity poles’ – bad marketing but trustful mathematics – was
laid down for the first time). Some contributions followed sparsely [2]–[5] until the three-
paper publication [6]–[8], which brought the theoretical basis for general linear problems of
elastostatics and steady-state potential, with code-implementation and applications for the
two-dimensional (2D) case. Although properly using the concept of ‘complex singularity
poles’, these papers were based on real-variable Cartesian coordinates. A fully complex-
variable reformulation followed [9], also as the subject of a technical presentation during last
year’s BEM/MRM conference [10].

Despite the sound mathematics laid down in the papers just outlined, the question ‘can
we do better?’ (for the particular case of 2D linear problems of elastostatics and steady-state
potential) persists concerning an efficient numerical simulation:
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1. A first issue refers to an eventual optimal node location inside a boundary element.
2. An efficient – problem-dependent – mesh-refinement technique should be considered.
3. Moreover, the isoparametric formulation – and the related, elegant convergence

theorem proposed in Dumont [6] for generally curved elements – may require the
approximate representation of the problem’s boundary geometry, and, then, not be the
best one.

We are concerned rather with concepts than with code-implementation aspects and
numerical assessments. This contribution is meant as the layout of a paper in preparation [11].

The denomination ‘geometry-preserving’ is in the present context more informative than
and not committed to the term ‘isogeometric’ proposed by Cottrell et al. [12] for widespread
applications also in the frame of the boundary element method – which do not take into
account the mathematical consistency of our developments.

Before proceeding with the items above, it is necessary to outline a consistent
notation [6]–[9], [13], which was restricted to the isoparametric formulation. The following
developments are less formal but perhaps more intuitive, as we first resort to two elasticity
applications, taken from Dumont [10], [13] and to be seen not just as a repetition but rather
as a motivation and the illustration of how the numerical solution possibilities are deemed to
evolve.

2 TWO ILLUSTRATIVE APPLICATIONS
Infinite plate with a hole. Fig. 1 shows on the left an infinite plate with a circular hole
of radius a. The displacement and stress solutions for a uniform stress field σxx = 1, σyy =
τxy = 0 applied at infinity, according to Sadd [14], for instance, are compactly expressed in
polar coordinates as
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The maximum stress value is σmax = σθθ(r = a, θ = ±π/2) = 3, and we also obtain the
highest normal stress in the vertical direction σθθ(r = a, θ = 0) = −1.

As indicated on the right in the figure, we discretize the circular cavity with 10 quartic
elements and 40 equally spaced, equidistant nodes from the center – not taking advantage of
the double symmetry. The main source of errors in this simulation is related to the fact that
the circular surface is modeled with quartic polynomial elements, with non-smooth transition
between elements. In fact, we measure for nodes 1, 5, 9, 13, 17, 21, 25, 29, 33 and 37 the
same lack of smoothness, with (θ+−θ−)/2π ≈ 0.4999900076, when it should be exactly
1/2. Then, we should not expect in our numerical evaluations a relative accuracy error smaller
than about 0.00001998. When evaluating results, points along a horizontal axis on the right
in Fig. 1 – which goes through nodes 21 and 1 – should present the largest errors, as there is
some angularity there. Tangents about nodes 11 and 31 are horizontal and we should expect
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Figure 1: Infinite plate with a circular hole (left) modeled as 10 quartic elements (right) with
30 points at which results are to be evaluated.

the smallest errors measured along a vertical from there. Nodes 6, 16, 26 and 36, which
are located at angles multiple of π/4 of inclination, do not have tangents inclined of exact
multiples of π/4, since they are not middle nodes of the quartic elements. Such lacks of
polar symmetry are intentional in order to have geometric simulation errors introduced in our
model. The figure also indicates three series of 10 points, each, at which stress results are to
be evaluated. Points 1, 11 and 21 are 0.6 + 10−10 distant from the center, with interpolated
points up to the respective points 10, 20 and 30, which are at a distance 1.5 + 10−10 from the
center, in such a way that points 1 . . . 4, 11 . . . 14 and 21 . . . 24 are actually internal to the
cavity, that is, external in relation to the open domain of interest. We intentionally set points
5, 15 and 25 inside the open domain and just 10−10 distant from the respective nodes 1, 31
and 36. Besides the geometry errors, we should expect some round-off errors related to these
close points. This is assessed in Dumont [10], [13] and not repeated here.

The superiority of applying the present geometry-preserving formulation to this kind of
problem is numerically demonstrated in Dumont [11].

Topologically extremely challenging problem. Fig. 2 represents a 2D domain (about 25
units across) with some challenging topological features, to be subjected to a series of elastic
fields, as described in Dumont [9] and summarized in Dumont [13], which is on the other
hand a development of a simpler numerical model proposed in Dumont [8]. Readers are
referred to these papers for the complete description of this cut-out test and thorough result
assessments. The cusp at node 1 has an internal angle of about 10−8 rad, the external angle
at node 17 is of about 10−13 rad, and the strip of material between the cavity and the external
boundary is only about 10−4 unities wide, for an isoparametric formulation with quadratic
elements. As detailed in Dumont [9], these angles and distances are much larger when we just
switch to quartic elements, which makes the geometric problem discretization-dependent: a
disadvantage of the isoparametric formulation, to be addressed next.

The indicated crosses in Fig. 2 are a total of 41 – in part internal and in part external
– points at which stress results are to be numerically evaluated for the applied stress fields.
Some of these points are very close to the boundary, as described and assessed in Dumont [8],
[9]. Most important, we generate between internal point 30 and node 69, which are visually
indistinguishable from each other in the figure, a series of 10 points that approach node 69
at geometrically decreasing distances, as indicated in the first row of Table 1 of Dumont [9],
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Figure 2: Two-dimensional figure with some challenging topological issues and to be
subjected to a series of elastic fields, as reproduced from Dumont [9].

[13]. A similar series of 10 very close points to node 17 is also generated, with the distances
indicated in the second row of the mentioned Table: these distances go as small as 10−17 and
10−18. If we consider all geometric data given in meters, the smallest distances are actually
about one thousandth of a typical proton size, which is meaningless in terms of continuum
mechanics but not mathematically!

As indicated in Dumont [13], this elastic body is subjected to two rigid-body translations
and a set of four linear, quadratic, cubic, quartic and quintic polynomial fields, thus a
total of 22 fundamental (that is, homogeneous) solutions of the elastostatics problem for
homogeneous, isotropic material, as given in eqns (15–19) of Dumont [8] in terms of real
variables, and very compactly on the right in eqn (34) of Dumont [9], in terms of the complex
z = x+ iy. Rigid-body rotation is obtained as the combination of two of the linear solutions.

The main issue when dealing with such a problem in the frame of an isoparametric
formulation is that the challenging geometry is discretization-dependent. Then, distinct
meshes reproduce distinct, albeit approximate, problems – and then not strictly comparable.

3 BASIC PROBLEM FORMULATION IN THE CONSISTENT, COLLOCATION
BOUNDARY ELEMENT METHOD

The peculiarities of present interest for the evaluation of results at internal points are dealt
with in the papers referenced above, and shall not be addressed here.

Whether using real or complex variables, the basic system matrix to be solved in the
frame of the CBEM has the format

H(d− dp) = G(t− tp)ad (3)
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In this equation, H is the square, double-layer potential matrix of order nd = 2nn, for 2D
elasticity and the problem discretized with nn nodal points, and G is the single-layer potential
matrix with 2nn rows and 2(nn + ne) columns, as we code for ne elements of any order oe,
in principle taking into account that the left and right tangents at a nodal point connecting
two elements are different, in the isoparametric formulation for generally curved boundaries.
The number of columns of G may be significantly smaller in the patch-related, geometry-
preserving formulation we are about to present.

As laid down in Dumont [4], [6], we are assuming just for the sake of elegant and compact
formulation that some particular solution of interest is known – whether or not related to non-
zero body forces – and may be approximately expressed as boundary nodal displacement dp

and traction tp data. This is the case of the infinite plate with a hole of Fig. 1 [10], [13]. The
problem’s primary boundary displacement and traction parameters are d and t, which are in
part known and in part to be obtained in the frame of a general mixed-boundary formulation
(t = 0 for the problem of Fig. 1, and d is to be obtained). As comprehensively assessed in
Dumont [3], [6]–[8], we write for consistency that the traction (t− tp)ad is admissible, in
equilibrium with the applied domain forces: this follows the same mathematical/mechanical
principle that, since – for a finite domain – rigid-body displacement amounts of (d− dp)
cannot be transformed into forces, also non-equilibrated forces should not be transformed
into displacements (see Section 5.3).

In complex-variable, 2D plane-strain elasticity, the matrices of eqn (3) are [9]
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Real-variable expressions [7] might substitute for the above, but the complex representation
is undeniably simpler. Here, z = x+ iy, and we use n = −iz′/|J | ⇔ n̄ = iz̄′/|J | for the
unit normal, also considering dΓ = |J |dξ. The material’s shear modulus and Poisson’s ratio
are G and ν.

The rows above refer to the source, complex point force p∗s = (p∗x + i p∗y)|(at s) and its
conjugate p̄∗s = (p∗x − i p∗y)|(at s). The first columns stand for either node n or locus ` on a
boundary segment, to which either complex displacements dn = (dx + i dy)|(at n) or tractions
t` = (tx + i ty)|(at `) are attached.

Only the first rows of the above matrices need to be implemented in a code [9].
We develop eqns (4) and (5) for evaluations using Gauss–Legendre quadrature and then

eventually accrue mathematically exact corrections conditioned by three logical constants
< no sing, sing, quasi sing >. This is thoroughly addressed in Dumont [9], [13].

4 CONSISTENT NOTATION AND IMPLEMENTATION POSSIBILITIES
We present the basic notation formally proposed in the previous papers [6], [13], but add
the possibility of working with the concept of boundary patches and geometry-preserving
description. We resort to the applications of Section 2 to underlie the technical arguments.

Three geometric entities are considered in eqns (4) and (5) for the elasticity problem.
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Displacement and traction representation. The real functionsNoe
n ≡ Noe

n (ξ) andNoe
` ≡

Noe
` (ξ) of the real, natural variable ξ ∈ [0, 1] interpolate displacements and tractions,

respectively, along a generic boundary segment Γseg ≡ Γseg(ξ), ξ ∈ [0, 1], of the problem’s
whole boundary Γ. This is carried out in the frame of a consistent formulation, to which
the reader is referred in order to fully understand our developments (we maintain that
the developments in the textbooks on the BEM are not consistent). The functions Noe

n

interpolate displacements from nodal displacements dn, whereas Noe
` interpolate from

traction parameters attached to boundary loci (attention to Ansatz 2 and eqn (20) of
Dumont [6]!). Observe that nodes n and loci ` are different geometric entities that may be
differently allocated along the boundary.

The superscript oe in both Noe
n and Noe

` is the interpolation order in terms of Lagrangian
polynomials, as we have considered in the previous papers and are considering here. As
outlined in Dumont [6], oe = 0 corresponds to the constant element and, although implicit in
our developments, should be avoided for referring to a superparametric formulation (just use
oe = 1 for better results with the same computational effort). Our codes are implemented for
the four cases oe = 1, 2, 3, 4, but higher-order elements are seamlessly supported.

Isoparametric boundary geometry description. We also recognize in eqns (4) and (5)
the boundary geometry description given by the complex z ≡ z(ξ)− zs = x(ξ)− xs +
i (y(ξ)− ys), then referred to a source point s that may be infinitesimally close to but
is conceptually not on the boundary [6]. In an isoparametric formulation, the boundary
Cartesian coordinates (x, y) are interpolated along each boundary segment Γseg in terms of
interpolation functions Noe

m (m refers to key geometric points) that are linear combinations
of the displacement interpolation functions Noe

n . However, it may not be the most advisable
strategy, in general, as illustrated for the circular hole and the cut-out test of Section 2, for
their circular and sinusoidal boundary patches.

Schematic illustration. We illustrate on the left in Fig. 3 – as already advanced in
Dumont [13] – the case of two consecutive cubic (oe = 3) boundary elements of a 2D
elasticity problem, with nm = nn = 4 nodes for geometry (◦) and displacements (�), which
in this case coincide (as it usually occurs in an isoparametric formulation), and n` = nn = 4
loci (×) for tractions, which are not at the element extremities but at distances ε→ 0 (we
do not say ‘discontinuous’, which is just a misconception [6]). The points (∗) are for the
collocation of the sources s in the domain but at distances → 0 from the nodal points n, in
the frame of the CBEM. There are nd = nel(nn − 1) = 3nel nodes for a total of nel elements
that comprise the complete problem we are simulating with cubic elements. For an elasticity
problem implemented in terms of real variables, the double-layer potential matrix H is square
of order 2nd = 2nel(nn − 1) = 6nel, and the single-layer potential matrix G has the same
number of rows but 2nt = 2neln` = 8nel columns, where nt is the total number of traction
loci.

The quest ‘isoparametric versus geometry-preserving’ boundary description is this
paper’s core. However, we should first briefly address a related subject, itemized as # 1 in
Section 1, which may look promising but is not.

4.1 Attempt to optimize node n and locus ` location inside an isoparametric element

The case on the right in Fig. 3 is almost similar to the previous description, also with
nm = nn = 4 nodes for geometry and displacements, but whose locations only coincide at
the extremities, since we are now considering the abscissas of a Radau–Lobatto quadrature for
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Figure 3: Two consecutive cubic elements for a 2D problem, illustrated on the left for
nm = nn = n` = 4 nodes and loci per element, and on the right in an optimization
attempt for nm = nn = 4 nodes and n` = 3 loci.

the displacement nodes (�) while keeping the geometry nodes (◦) unaltered. Most important,
we have n` = nn − 1 = 3 parameter loci (×) for traction along an element at abscissas
given by the roots of a Legendre polynomial, which are at finite distances from the element
extremities: such implementation still satisfies the convergence Theorem 1 [6]. There are in
this case nd = nt = nel(nn − 1) = 3nel nodes and loci for a total of nel elements. In terms
of real variables, both matrices G and H are square of order 2nd = 2nel(nn − 1) = 6nel.

The reason for such an implementation would be to improve the representation capacity
of interpolation functions Noe

n and Noe
` , as nn Radau–Lobatto and n` Legendre points

lead to the accurate integral representation of polynomials of order 2nn − 3 and 2n` − 1,
respectively. In the illustrative case of a cubic (order 3) element, we have 2× 4− 3 = 5 and
2× 3− 1 = 5, thus 5th (and not just 3rd) order polynomial representations for displacements
and tractions.

Such an idea of polynomial optimization seems tempting and may deserve some
numerical experimentations (we already have the code implementation). However, there are
some issues to consider. First, the polynomials Noe

` and Noe
n do not feature alone in a

boundary element implementation, but rather multiplied with some functions, as given in
eqns (4) and (5). Then, the integral representation capacity referred to in the above paragraph
– and the basis of the Gauss–Legendre quadrature – does not take place in the applications
of interest. A second, not strong reasoning would be in terms of result interpretation, as the
nn and n` locations are not as simply distributed as in the scheme on the left in Fig. 3. There
is, however, a very strong argument against such an optimization attempt, which is related to
the lack of smoothness in the distribution of nn and n` locations along a boundary patch –
particularly in the frame of an adaptive mesh refinement, as we address next.

5 THE CONCEPT OF GEOMETRY-PRESERVING BOUNDARY PATCHES Γpatch
The geometry and all relevant mesh-generation data of the circular hole of Fig. 1 are given
in terms of just two semicircles and three lines of data. As given in Table 1 of Dumont [9]
and to be observed in Fig. 2, the features of this topologically challenging model require 18
lines of data for complete generation of all 15 boundary patches. (We need an extra line with
a dummy node to close a subboundary). The concept of boundary patch (Γpatch) leads to a
simpler and faster code for the same data entry, as an advancement of the codes reported in
our recent publications. In Table 1 of Dumont [9], for instance, the first patch starts at node 1,
coordinates (0, 0), and finishes at node 17, coordinates (7.2, 14), with the geometry deviating
from the chord 1− 17 by the curve ypatch(ζ) = 5 sin(2ζπ), ζ ∈ [0, 1]. This patch generation
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Figure 4: Generic boundary patch Γpatch(ζ), ζ ∈ [0, 1] with a segment Γseg(ξ), ξ ∈ [0, 1].

is for quartic elements (oe = 4) and 4 elements, which means that the key node number 17
is itself generated (= 1 + oe × 4). We enter for this patch that the distance from node to
node varies at a geometric rate fnode = 1.0, is then constant (increasing and decreasing node
distances occur for the patches connecting 17–25 and 61–65).

5.1 Homothetic node and element generation

Fig. 4 represents a general patch that spans from (xinit, yinit) to (xfinal, yfinal) and has the
shape (xpatch(ζ) = ∆ζ, ypatch(ζ)), ζ ∈ [0, 1] where ypatch(ζ) must be entered.

We may have any topologically consistent boundary shape ypatch(ζ), ζ ∈ [0, 1], in which
‘consistent’ means taking care that the Jacobian of the coordinate transformation keeps
positive not only along the curved boundary but also in the complex vicinity, such as for the
indicated source point s, for the analytical corrections of eventual quasi singularities [6]–[9],
[13] to take place. Once the patch-referred coordinates are obtained, the global coordinates
become, here expressed in terms of the complex z(ζ) = x(ζ) + iy(ζ), for simplicity,

z(ζ) = zinit + zpatch(ζ)
∆zpatch

∆
(6)

In our previous codes, the outer-most loop spans all boundary elements (segments Γseg),
as shown in Algorithm 1 of Dumont [6], for (computationally more involved) geometric data
should be evaluated first. We are coherently proposing that the outer-most loop runs for the
boundary patches, ipatch = 1 . . . npatch, with geometry pre-evaluations carried out and stored
for a typical element of the patch, as shown next (see also [11]), which includes adaptive mesh
refinement along a patch within the concept of homothetic elements. (We might have element
orders oe differing from patch to patch.) Only then we run a loop for the source points s,
evaluate the patch-related complex distance ζs, and then the loop for all elements inside the
patch, again, for which the pre-evaluations have been done.

Fig. 5 is the schematic illustration of how homothetic elements are generated, with four
meshes going from node 1 through node 13, for the generation of 12 linear, 6 quadratic, 4
cubic or 3 quartic elements including eventual internal natural points ξj , j = 2 . . . oe, as we
always have ξ1 = 0 and ξoe+1 = 1.

In this figure, the nodes 2 to 12 are generated in such a way that the distance between
consecutive nodes increases at a geometric rate fnode = 1.25. In our homothetic element
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Figure 5: Schematic representation of a boundary patch (natural coordinate ζ ∈ [0, 1]) with
13 nodes (circles), whose consecutive distances grow at the rate fnode = 1.25. The
homothetic subdivision for linear through quartic elements (natural coordinates
ξj ∈ [0, 1], solid circles for the respective end nodes) is also indicated.

generation, the relative size fel of consecutive elements also increases exponentially:

fel = foenode (7)

This means that the node locations inside any element of the patch have the same
representation in terms of the element natural coordinate ξ ∈ [0, 1], which is illustratively
shown for some elements in the figure. This is the reason of calling ‘homothetic’ such
combined element and node generation. Given a boundary patch ipatch, we first carry out all
necessary geometric and singularity-related pre-evaluations for a representative element of
the patch and only then proceed with the algorithm that takes the source points into account.
These pre-evaluations include the analytical expression and storage ofNoe

n andNoe
` as well as

of the integrals required in the quasi-singularity corrections – always taking into account that
the natural node coordinates ξj , j = 1 . . . oe + 1 are not equally spaced inside the element
but rather reflect the distance amplification illustrated in Fig. 5. This means, for instance, that
the Jacobian for coordinate transformations along straight and circular patches is constant,
which leads to smaller quadrature errors. (See the second paragraph of Section 5.1.)

Let nζ be the numbering difference between the first and last nodes of a patch (nζ =
13− 1 = 12 in Fig. 5). We set

ζ̃ = 1

/nζ−1∑
j=0

f jnode , δ = 0 (8)

and carry out the simple algorithm for the evaluation of the local ζi coordinates of the
generated nodes in the patch:

for i from 1 to nζ + 1 do

ζi = δζ̃

δ ← δfnode + 1
end do

(9)
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The coordinate transformation between patch coordinate ζ and element coordinate ξ is
given for the i th element, according to Fig. 5, as

ζ = ζi + ξ (ζi+1 − ζi) ⇔ ξ = (ζ − ζi)/(ζi+1 − ζi), ζ ∈ [ζi, ζi+1] (10)

and the Jacobian of the coordinate transformation is

|J(ξ)|seg = |J(ζ)|patch
∂ζ

∂ξ

∣∣∣∣
seg

= |J(ζ)|patch (ζi+1 − ζi) , ζ ∈ [ζi, ζi+1] (11)

with, in complex coordinates, |J(ζ)| ≡ |∂z(ζ)/∂ζ|.

5.2 Evaluation of the complex ζs coordinate of a quasi-singular point source zs = xs + iys

Fig. 4 depicts a star for a generic source point. Such points are also indicated as crosses (+)
in Figs 1 and 2, and may be extremely close to the boundary, as illustrated in Section 2
with reference to Dumont [6]–[9], [13]. In these papers, the complex natural coordinate
ξs corresponding to a close source point zs = xs + iys is evaluated iteratively for every
boundary segment Γseg , as its geometry is given – in the frame of an isoparametric
formulation – piecewise in terms of the interpolation functions Noe

n (ξ) with local support
ξ ∈ [0, 1]. In the present geometry-preserving formulation, we have a unique analytical
function z(ζ) spanning a whole boundary patch, according to eqn (6). The search is then
for the patch-related complex natural coordinate ζs in terms of the same Newton–Raphson
algorithm outlined in Appendix A of Dumont [6]. Once obtained for a given patch Γpatch(ζ),
ζs is successively transformed into the complex ξs for each one of the boundary segments
Γseg(ξ) according to the same eqn (10):

ξs = (ζs − ζi)/(ζi+1 − ζi), for the i th boundary segment (12)

where both ζs and ξs are in general complex. When the boundary patch is either a straight
segment or an arc of circle, as in Fig. 1 or in 14 of the 15 patches of Fig. 2, the natural
coordinates ζ and ξ of the general Fig. 4 are defined as following along the curved patch,
leading to a constant Jacobian even for adaptive mesh refinement. In such particular cases,
the complex source point ζs may be obtained analytically, which speeds up calculations [11].

5.3 Spaces W, R of inadmissible displacements and tractions

Rigid-body displacements. We have proposed at the very beginning of our developments
on boundary element methods [15] a matrix W as the basis of rigid-body displacements in a
finite domain, as expressed for elasticity. This is shown in detail in Dumont [6], where it is
set in eqn (18) of Definition 1 that the rigid-body displacements urik along the boundary are
linear combinations of the displacements Noe

n . However, this only holds in the isoparametric
formulation. In the present geometry-preserving context for 2D problems, the three rigid-
body displacements (two translations and one rotation) at a given point of the boundary are[

ur1 ur2 ur3
ūr1 ūr2 ūr3

]
⇐
[
1 i iz(ζ)
1 −i −iz̄(ζ)

]
at a point of the boundary patch (13)

here defined in terms of the complex variable, so that we only evaluate the first matrix row.
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Inadmissible tractions. Building up on a 1998 paper [3], it is shown in Dumont [6] – and
explored subsequently also in the context of complex variables [9], [13] – that a consistent
boundary element formulation requires that, for a finite body, if the rigid-body amount of
displacements (d− dp) in eqn (3) cannot be transformed into forces, conversely, the amount
of non-equilibrated tractions (t− tp) cannot be transformed into displacements:

HW = 0 ⇔ GadR = 0 (14)

This reasoning leads to the evaluation of the rigid-body displacement amount in the
expression of a fundamental solution, embedded in the single-layer potential matrix Gad,
where the subscript means the filtered, admissible part of the matrix. The reader is referred
to Dumont [6], where the matter is illustrated didactically. The formulation in terms of a
complex variable is shown in Appendix A.2.2 of Dumont [9]. In the case of a geometry-
preserving formulation,

R`k = |J |(at `)

∫ 1

0

[
1 i iz (ζ(ξ))
1 −i −iz̄ (ζ(ξ))

]
Noe
` (ξ)dξ for a boundary element (15)

obtained using Gauss–Legendre quadrature along each segment of the whole boundary, as
Noe
` has local support for ξ ∈ [0, 1] [6], [9], [11], [13].

The left part of eqn (14) is rather axiomatic also in the present context and has been
checked numerically for the topologically challenging example of Fig. 2: errors are only due
to the Gauss–Legendre quadrature of the problem’s regular integrals.

6 CONCLUDING REMARKS
The developments proposed in Dumont [9], [10] as the complex-variable counterpart of
Dumont [6]–[8] for 2D potential and elasticity problems could be further improved, as shown
in this short contribution and to be thoroughly assessed in a paper in preparation [11]. Further
to properly addressing the three entities – boundary nodes n (for potentials or displacements),
boundary loci ` (to which normal fluxes or tractions are referred), and domain points s, at
which we collocate the singular sources in the context of an isoparametric formulation – we
show that a geometry-preserving concept must be explicitly resorted to if numerical precision
and accuracy are deemed relevant in the numerical simulation of real-world problems. The
convergence Theorem proposed in Dumont [6] is no longer applicable but this seems to be
compensated by the attained geometric description of a physical model – particularly when
dealing with topologically challenging configurations.

We use the concept of geometry-preserving boundary patches Γpatch, along which
boundary nodes and elements are adaptively refined in a homothetic concept. This avoids
distortions in the problem’s geometry description and leads to more robust simulations and
more accurate and reliable results, as assessed in Dumont [11]. Given a source point (xs, ys),
we only need to evaluate its complex location ζs once for a whole boundary patch Γpatch.
This and the simplifications related to the homothetic mesh refinement, particularly using the
complex z = x+ iy, lead to the assembling time of all relevant matrices significantly smaller
than in the original code. The analytical, correction terms to be accrued for quasi-singularities
are the same ones previously proposed.
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