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ABSTRACT
The boundary element method (BEM) and the method of fundamental solutions (MFS) are well-known
fundamental solution-based methods for solving a variety of problems. Both methods are boundary-
type techniques and can provide accurate results. In comparison to the finite element method (FEM),
which is a domain-type method, the BEM and the MFS need less manual effort to solve a problem. The
aim of this study is to compare the accuracy and reliability of the BEM and the MFS. This comparison
is made for 2D potential and elasticity problems with different boundary and loading conditions. In the
comparisons, both convex and concave domains are considered. Both linear and quadratic elements are
employed for boundary element analysis of the examples. The discretization of the problem domain in
the BEM, i.e., converting the boundary of the problem into boundary elements is relatively simple;
however, in the MFS, obtaining appropriate locations of collocation and source points need more
attention to obtain reliable solutions. The results obtained from the presented examples show that both
methods lead to accurate solutions for convex domains, whereas the BEM is more suitable than the
MFS for concave domains.
Keywords: boundary element method, method of fundamental solutions, elasticity, potential problem,
convex domain, concave domain.

1 INTRODUCTION
Numerical methods developed for solving partial differential equations can be divided into
two basic categories namely domain-type and boundary-free methods. Among domain-type
methods, one can mention the finite element method (FEM), the finite difference method, and
the finite volume method. The main advantages of boundary-type methods over domain-type
methods are their fewer amounts of input data and their potential to tackle with moving
boundaries, moving loads, and infinite domains. Over last three decades, engineers and
scientists have become more interested in mesh reduction methods. Computational methods
such as the boundary element method (BEM) and the method of fundamental solutions (MFS)
are among these techniques and both are capable of providing excellent results for solving
different problems in physics and engineering [1], [2]. The two methods are based on the
knowledge of a fundamental solution of the problem. However, unlike the BEM, the MFS is
an integration-free method and has some attractiveness for solving some problems [2], [3].
The MFS reduces the computation time significantly in comparison with the BEM as it
does not require boundary discretization and computation of singular or regular integrals
over the boundary [4], [5] and it can solve certain inverse problems without iteration [6].
Primarily research on the BEM for potential problems dates back to 1903 when Fredholm
established his investigation on potential problems based on a discretization technique. The
direct boundary integral equation for potential problems was first proposed by Jaswon [7]
and Symm [8]. The BEM for solving potential problems in axisymmetric domains was
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successfully established by Rizzo and Shippy [9]. Earlier attempts to use the BEM for
elasticity problems was made by Muskhelishvili et al. [10], Kupradze [11]. After that, the
BEM was employed for analysis of a wide range of problems.

The idea of the MFS as a computational tool for solving various partial differential
equations dates back to 1960s where Kupradze and Aleksidze [12] introduced this method
for boundary value problems and later Mathon and Johnston [13] improved this method
for numerical implementation. Karageorghis and Fairweather [14] employed the MFS for
axisymmetric potential problems for the first time. Later, it was successfully applied to a
variety of potential and elastic problems, see for example Fam and Rashed [15], Young
et al. [16], Marin et al. [17], Karageorghis et al. [18], Fan and Li [19], Mohammadi
et al. [20]. Suitable arrangement of source points and collocation points in the MFS has
been always disputable and under discussion among the researchers. An arrangement of
collocation points in the MFS can lead to an accurate solution while another arrangement
with a little change may lead to inaccurate results [21]. In the MFS, the location of the pseudo
boundary can be fixed and selected before solving the problem, or it may be determined by
an optimization process. In former case, a pseudo boundary similar to the boundary of the
problem is usually considered [22]– [24]. In the latter case, the optimal pseudo boundary
as a circle and a sphere in 2D and 3D problems is found, respectively [25]–[27]. Optimal
pseudo boundaries can provide more accurate solutions [28]–[30]; however, it should be
mentioned that optimization algorithms can be relatively time consuming [27] and disappear
the simplicity and attractiveness off the MFS. Recently, Hematiyan et al. have recommended
some remarks for properly determination of the position of source points in the MFS for
potential [3] and elasticity [31] problems. In previous investigations, the BEM and the MFS
have been compared in some aspects. Tadeu et al. [32] investigated the efficiency of the
BEM, the MFS and radial basis function (RBF) method in wave propagation problem in an
elastic domain. The MFS was found to provide results with more accuracy. Salgado-Ibarra
[33] compared the accuracy of the MFS and the BEM for an elliptical domain considering
different boundary conditions. A circle was considered as the pseudo boundary for solving
the Laplace equation and the Saint Venant’s torsion problem using the MFS. They observed
that the MFS was less time-consuming and had much easier implementation. Alves et al. [34]
applied the BEM and the MFS to 2D Laplace equation. The accuracy of these methods was
studied for several problems with discontinuity of boundary conditions. They observed that
the BEM with double layer potential has a better performance in comparison with the MFS
for problems with discontinuous boundary conditions. Considering different computational
fields like magnetic and electric problems the scientist obtained similar observations, which
acknowledged the superiority of the MFS over the BEM for some cases [35], [36]. Similar to
the BEM, the MFS technique can be particularly useful for the analysis of acoustic problems,
Godinho et al. [37] and Godinho and Soares [38] while the formulation of the MFS is
simpler than the BEM. Dyhoum et al. [39] investigated several EIT (electrical impedance
tomography) problems and found the BEM more convergent and stable in comparison with
the MFS, which imposed some restriction on the arrangement of source points. Liravi et al.
[40] analysed elastodynamics behaviour of solid structure, e.g., cylinder and a thin circular
shell located in the soil. A new control technique was implemented to discover the optimal
distance between collocation points. According to this investigation, the MFS showed a
greater sensitivity to the parameters than the BEM.

In this study, the MFS and the direct BEM for solving potential and elasticity problems
in 2D convex and concave domains are compared. By performing numerical studies, the
advantages and disadvantages of the two methods for convex and concave domains with
simple and complicated boundary conditions are highlighted. To the authors’ best knowledge,
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it is the first time that the ability of the MFS and the BEM for different shapes of domain are
compared.

2 THE MFS AND THE BEM FOR POTENTIAL AND ELASTOSTATIC PROBLEMS

2.1 The MFS for potential problems

In the MFS for 2D problems, some collocation points must be considered on the physical
boundary of the problem in order to satisfy the boundary conditions, followed by source
points on the pseudo boundary, which is defined around the physical boundary. Any source
point placed on the pseudo boundary corresponds to a fundamental solution, which provides
a solution. Due to linearity of the Laplace and elasticity equations, the summation of the
fundamental solutions with arbitrary coefficients also satisfies the equations. The coefficients
(intensities of sources) can be determined by satisfying the boundary conditions of the
problem at the collocation points. This procedure generates a system of equations, solution
of which provides the unknown coefficients. The number of unknowns and the number
of equations is in accordance with the number of source points and collocation points,
respectively. The solution for an arbitrary internal or boundary point can be found by taking
into account the effects of all sources on the pseudo boundary. The Laplace’s equation in
the 2D domain Ω with a generalized boundary condition on the boundary Γ are expressed as
follows:

∇2φ = 0 in Ω, (1)

f1φ+ f2
∂φ

∂n
= f3 on Γ, (2)

where, f1, f2 and f3 are known functions on the boundary, n is the outward direction normal
to the boundary Γ and φ is the primary variable of the problem. As previously mentioned, the
solution is approximated by a linear combination of fundamental solutions as follows [14]:

φ(x) =
N∑
i=1

aiφ
∗(x, ξi), (3)

where ai and ξi represent the intensity and location of the ith source located on the pseudo-
boundary Γ′, N is the number of source points, and x is the coordinate of the point in the
domain or on the boundary of the solution domain. The constants ai are the unknowns of
the problem that have to be found. The fundamental solution for 2D Laplace equation can be
expressed as follows [41]:

φ∗(x, ξi) = − 1
2π

ln ri, (4)

where ri represents the distance between the source point ξi and the field pointx. Substituting
eqn (4) into eqn (3) leads to:

N∑
i=1

ai

[
f1(Cj)φ∗(Cj , ξi) + f2(Cj)

∂φ∗(Cj , ξi)
∂n

]
= f3(Cj) j = 1, 2, ...,M, (5)

where C1,C2, ...,CM are collocation points. In order to find the unknowns of the problem
i.e., ai, the number of the equations or collocation points should be greater than the number
of unknowns or source points (M ≥ N ). Eqn (5) indicates a system of M linear equations
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with N unknowns, which can be written in following form:

BX = F, (6)

where the elements of the matrix B ∈ (RM×N , the vectors X ∈ RN and F ∈ RM can be
expressed as:

Bji = f1(Ci)φ∗(Ci, ξj) + f2(Cj)
∂φ∗(Ci, ξj)

∂n
, (7)

Fi = f3(Ci) Xi = ai. (8)

In the case of M = N , the system of equations can be solved using standard methods
such as the Gaussian elimination method or using the inverse of the coefficient matrix as
follows:

X = B−1F. (9)

In the case ofM > N , the system of equations will be over-determined and can be solved
in the least-squares sense as follows:

X = (BTB)−1BTF. (10)

When the intensity of the source points ai are determined, the solution can be calculated
on any internal or boundary points using eqn (3).

2.2 The direct BEM for Laplace’s equation

The BEM is based on the Green theorem where the fundamental solution of the Laplace
equation is taken as the auxiliary function. Two scalar functions φ∗ and φ which are
continuous over the domain boundary are considered in the BEM that correspond to the
fundamental solution of the Laplace equation and the variable of the problem, respectively.
Using the Green theorem, the integral equation for the Laplace’s equation can be expressed
as follows [41]:∫

Ω

(φ(z)∇2φ∗(x, z)− φ∗(x, z)∇2φ(z))dv(z) =
∫

Γ

(φ(y)
∂φ∗

∂n
(x,y)

−φ∗(x,y)
∂φ

∂n
(y))ds(y) x, z ∈ Ω,y ∈ Γ. (11)

The function φ corresponds to the variables of the problem defined on the domain Ω, φ∗

is fundamental solution of the Laplace equation which is defined according to eqn (4) and n
is the outward normal direction to the boundary. The point x in this equation corresponds to
the location of a unit load in the auxiliary problem, while y and z are arbitrary points on or
within the boundary of the problem. Eqn (11) can be simplified by using the Green theorem
and integration techniques as follows [41]:

c(x)φ(x) +
∫

Γ

φ(y)
∂φ∗

∂n
(x,y)ds(y) =

∫
Γ

φ∗(x,y)
∂φ

∂n
y)ds(y) x,y ∈ Γ. (12)

c(x) is a coefficient which presents the free term of integral equation and it will be calculated
according to the geometry and boundary condition of the problem [41].
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2.3 The MFS for 2D elastostatic problems

When there are no body forces, the governing equations for the elastostatic problem in 2D
domain Ω and its boundary Γ are expressed as follows [42]:

σij,j = 0, (13)

εij =
1
2

(ui,j + uj,i) , (14)

σij =
νE

(1 + ν)(1− 2ν)
δijεkk +

E

1 + ν
εij , (15)

where σij and εij are the stress and strain tensors, respectively; ui is the displacement vector,
ν and E are the Poisson’s ratio and Young module of the problem. The boundary condition
for general 2D elastostatic problems can be expressed as:

fsjuj + gsiσijnj = ps i, j, s = 1, 2 for 2D problems. (16)

fsj , gsi and ps are given functions on the boundary and nj represent components of
the outward unit vector normal to the boundary Γ. In the MFS for elastostatic problems,
displacement components are generally explained as follows [14]:

ui(x) =
N∑
k=1

2∑
m=1

am(ξk)u∗im(x, ξk), (17)

where ξk is the location of the kth source (concentrated fictitious force) located on the
pseudo-boundary Γ′, N is the number of source points, and x is a point in the domain
or on the boundary of the solution domain. The constants am(ξi) are the unknowns of
the problem, which must be determined. The strain tensor components are obtained by
substituting eqn (17) into (14), which yields:

εij(x) =
N∑
k=1

2∑
m=1

am(ξk)ε∗ijm, (18)

where

ε∗ijm =
u∗im,j + u∗jm,i

2
. (19)

In addition, the stress tensor components may also be computed by substituting eqn (18)
into eqn (15):

σij(x) =
N∑
k=1

2∑
m=1

am(ξk)σ∗ijm, (20)

where

σ∗ijm =
[

νE

(1 + ν)(1− 2ν)
δiju

∗
tm,t +

E

2(1 + ν)
(u∗im,j + u∗jm,i)

]
. (21)

To calculate the stress and strain components, the first derivatives u∗ij must also be
calculated. The fundamental solution for 2D elasticity problems is given as follows [22]:

u∗ij =
1

8πG(1− ν̄)

[
(3− 4ν̄)δijln

1
r

+ r,i.r,j

]
, i, j = 1, 2. (22)
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The term r refers to the distance between source and any point within the domain or on
its boundary and G is the shear module. ν̄ for plane strain problems is the same as ν while
for plane stress problems is ν

(1+ν) . Differentiating eqn (22) leads to:

u∗ij,k =
1

8πG(1− ν̄)

[
−(3− 4ν̄)

rk
r2
δij +

rj
r2
δjk −

2rirjrk
r4

]
, i, j, k = 1, 2, (23)

where

ri = xi − ξi, r,i =
∂r

∂xi
=
ri
r
, r =

√
(x1 − ξ1)2 + (x2 − ξ2)2

, (24)

ξ2 = ηξ1 = ξ, x2 = y, x1 = x, (25)

r =
√

(x− ξ)2 + (y − η)2
. (26)

After substituting eqns (17) and (20) into (16) for an arbitrary boundary point M , the
following equation is obtained:

N∑
k=1

2∑
m=1

am(ξk)[fsj(Cl)u∗jm(Cl, ξk) + gsi(Cl)σ∗ijm(Cl, ξk)nj ] = ps(Cl),

l = 1, 2, ...,M. (27)

According to eqn (27), for 2D case, there will be 2M equations with 2N unknowns, in
which M and N are collocation and source points, respectively. C1, C2, ..., CM in eqn (27)
are collocation points. In order to obtain the unknowns am(ξi), the number of equations
should be equal or greater than the unknowns (2N ≥ 2M ). Eqn (27), which shows the
system of 2M equations with 2N unknowns, can be written in the form of:

BX = F. (28)

When M = N , the system of equations in eqn (24) can be solved as X = B−1F. In
the case of M > N the system of equations should be solved using least-square method as
X = (BTB)BTF. By calculating the coefficient of sources, solution in any arbitrary point
inside the domain or on the boundary can be achieved using eqn (22).

2.4 The direct BEM for 2D elastostatic problems

The reciprocal theorem is used to derive integral equations of elasticity. Assume that an elastic
body is subjected to two different loads and the solutions of the two problems are numbered
(1) and (2), respectively. This theorem indicates that the work done by the first system of
work acting via displacement of the second system is equal to the work done by the second
system of forces acting via displacement of the first system, that is [42]:∫

Γ

ti
(1)ui

(2)dΓ +
∫

Ω

Fi
(1)ui

(2)dΩ =
∫

Γ

ti
(2)ui

(1)dΓ +
∫

Ω

Fi
(2)ui

(1)dΩ, (29)

where Fi and ti represent body force and traction components, respectively. Using the
reciprocity theorem, one can obtain the elasticity integral equation. This is done by
considering the main problem as the first system and the Kelvin problem with the fundamental
solution as the second one. The integral equation of elasticity in the absence of body force
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and in a boundary form can be written as follows [41]:

cji(x)ui(x) +
∫

Γ

u∗ij(x,y)ui(y)ds(y) =
∫

Γ

T ∗ij(x,y)ti(y)ds(y) x, y ∈ Γ, (30)

where u∗ij represents the displacement fundamental solution of elasticity and is given in
eqn (22) and cji are free term coefficients [43]. T ∗ij is expressed as follows [41]:

T ∗ij =
−1

4π(1− ν̄)r

[
∂r

∂n
[(1− 2ν̄)δij + 2r,i.2r,j ]− (1− 2ν̄)(rinj − rjni)

]
. (31)

The component of stress after discretizing the boundary of the domain with a number
of boundary elements and after some numerical manipulations, the discretized form of the
boundary element equation may be written in matrix form as:

Hu = Gt. (32)

After satisfying the prescribed boundary conditions and rearrangement of unknowns
(displacement or traction) a standard system of algebraic equations is obtained that can be
solved by standard system solving methods.

2.5 A suitable configuration for source points in the MFS for 2D elasticity

The arrangement of source and collocation points has considerable effects on the accuracy of
the MFS results. In some problems, a little change in the configuration of source points may
lead to a considerable error in the results. Although extensive studies have been conducted
on the location of source points in the MFS, investigation on this topic is still underway. In
this work, we select the location of source points based on the recommendations provided by
Hematiyan et al. [3], [31]. According to the suggestion of Hematiyan et al. [3], the positions
of source points in the 2D potential problem is determined in such a way that the value
of the location parameter of the source points would be greater than 0.8. The value of the
location parameter in the 2D elastostatic problem is recommended to be greater than 0.85. The
value of the location parameter determines the location of an individual source point relative
to its neighboring source points and the boundary of the problem. The location parameter
can be defined using Fig. 1, which shows the schematic view of the main boundary, the
pseudo boundary and source points. The closest boundary point to the ith source point Si is
considered as its base point and is donated by Bi.

The location parameter is defined as follows:

Ki =
di/i

max(di−1/i, di+1/i)
, 0 < Ki < 1. (33)

where di/j represents the distance between the base point Bj to the source point Sj . If
the location parameter has a small value (the source points are close to the boundary), the
solutions will have an oscillation, while a larger value (near to 1.0) of the location parameter
(source points are far from the boundaries) will result in ill-conditioned system of equations.

3 RESULTS AND DISCUSSION
In this section by presenting several numerical examples with different geometries and
boundary conditions, the accuracy of the BEM and the MFS for convex and concave domains
are compared.

Boundary Elements and Other Mesh Reduction Methods XLVI  85

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 135, © 2023 WIT Press

,



Figure 1: The location of a source point relative to the base points of the neighboring source
points [3].

Table 1: Comparing temperature values in BEM and MFS for a Dirichlet boundary condition
for a rectangular sheet.

Node numbers TMFS TBEM

24 2.17662 2.286
54 2.1755 2.179
100 2.1755 2.176

Reference solution 2.1755 2.1755

3.1 Comparison of the BEM and the MFS for potential problems

3.1.1 A rectangular plate with Newmann boundary condition
A rectangular domain (2× 1) is considered with a coordinate system located at the center
of the rectangle. There are the following boundary conditions for the Laplace equation to be
solved:

φ = x2 + y2 on Γ. (34)

The problem has been solved using BEM and MFS with 24, 56, and 100 nodes. The MFS
configuration for the three cases is shown in Fig. 2. All three of these cases show a magnitude
of 0.9 for the location parameter. In the boundary element nodes are located on the boundary
at the same distance. A reference point of (1.25,0) is specified between BEM and MFS for
comparison purposes. A reference solution was obtained using the finite element method with
appropriate grid numbers. Table 1 provides the results for all three methods with different
node numbers. According to a reference solution, both methods are capable of providing
a reliable solution, and increasing the number of nodes will increase accuracy. While both
methods are acceptable in accuracy, it’s apparent that the MSF is more accurate with a lower
number of nodes.

3.1.2 Sheet plate with concave domain
This example illustrates how geometrical complexity of the domain affects the accuracy of
the solution obtained from MFS and BEM. Fig. 3 illustrates the plate with a concave domain
and boundary conditions. The boundary conditions and the governing equation of the sheet
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(a) (b) (c)

Figure 2: MFS arrangement of source and collocation points for a rectangular sheet with the
number of (a) 24; (b) 54; (c) 100 nodes.

Figure 3: Concave sheet.

Table 2: A comparison of temperature and flux values at Point A in a concave sheet domain.

Node numbers TMFS TBEM TGx(BEM) TGx(MFS)

35 3.250 3.249 1.0458 1.0245
67 3.250 3.249 1.0267 1.0270
90 3.250 3.250 1.0250 1.0285

Reference solution 3.250 3.250 1.0275 1.0275

are as follows:

T = x2 + y2 on the boundary, (35)

∇2T = 0 inside the domain. (36)

Temperature and flux at two arbitrary points A (1, 1.5) and B (2.5, 2.5) are calculated
in order to compare the accuracy of the proposed methods. The accuracy of the problem is
examined using 35, 67, and 90 nodes. Based on these values, BEM and MFS solutions were
compared. Finite element software is used to obtain reference values for flux and temperature
at points A and B. Tables 2 and 3 provide the calculated values of temperature and flux at
points A and B.

For BEM (Fig. 4), all nodes are located at the same distance from the boundary, while for
MFS (Fig. 5), the distance between nodes at the corner is smaller than for other nodes, this
distance will be achieved using location parameter.
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Table 3: A comparison of temperature and flux values at Point B in a concave sheet domain.

Node numbers TMFS TBEM

35 12.875 12.865
67 12.871 12.868
90 12.870 12.868

Reference solution 12.870 12.870

(a) (b) (c)

Figure 4: A BEM with (a) 35; (b) 67; and (c) 90 nodes for concave sheet plate.

(a) (b) (c)

Figure 5: MFS arrangement of source points and collocation points with (a) 35; (b) 67; and
(c) 90 nodes.

(a) (b)

Figure 6: (a) Temperature contours; and (b) Flux contours in concave sheet plate in FEM.

A reference solution for temperature and flux is calculated and simulated using finite
element software. Figs 6 and 7 represent the temperature and flux contours, respectively.

It has been necessary to calculate the temperature and flux contours obtained from MFS in
order to gain a more comprehensive understanding of the results. The contours of temperature
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(a) (b)

Figure 7: (a) Temperature contours; and (b) Flux contours in concave sheet plate in MFS.

Figure 8: The rectangular plate with plane strain condition.

and flux are shown in Fig. 8. As can be seen, the solution calculated by MFS on the domain
of the problem is similar to the reference solution calculated by finite element software.

Clearly, both BEM and MFS can provide high accuracy results for both temperature
and flux fields. The accuracy of both methods is the same, and the convergence rate to the
reference solution is increased by increasing the number of nodes. The FEM method requires
the use of thousands of nodes for fine-meshing, while the MFS and BEM methods can achieve
high accuracy results with only 90 nodes. As an alternative to MFS, BEM can provide more
accurate solutions in a concave domain, not only at point A, but also at internal point B. As
a result, it can be concluded that the arrangement of source points and collocation points
in MFS is critical. It is preferred to use BEM in cases of geometric complexity in which a
suitable arrangement of source points and collocation points cannot be achieved.

3.2 Comparison of BEM and MFS for elasticity problems

3.2.1 Rectangular plate with plane strain condition
In this study, a rectangular sheet plate with roller support on two sides was considered, and
the results of BEM and MFS were compared when a distributed tension load of 2 MPa was
applied. Fig. 8 illustrates the geometry, loading, and boundary conditions of the problem.
In solving the problem, Young’s module (E = 2× 109) and Poisson’s ratio (ν = 0.3) were
considered. Different numbers of source points were used to solve the problem, namely 24,
48, and 96. As a result of the study, error percentages for each method were calculated. It
is necessary to determine the appropriate location for source points and collocation points.
Based on evaluations, the location parameter of 0.85 has been chosen. Fig. 9 illustrates the
configuration for source points and collocation points in MFS. In BEM, the arrangements
of boundary nodes are presented in Fig. 10 with different numbers of boundary nodes. We
should remember that despite MFS, nodes can be positioned at the corner of a rectangular
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(a) (b) (c)

Figure 9: Arrangement of source points and collocation points for a rectangular plate with
plane strain condition in MFS with number of (a) 24; (b) 48; and (c) 98 nodes.

(a) (b) (c)

Figure 10: Arrangement boundary node for a rectangular plate with plane strain condition in
BEM with number of (a) 24; (b) 48; and (c) 98 nodes.

Table 4: Percentage of displacement error in MFS and BEM for rectangular sheet.

Node numbers Eux(MFS)) Eux(BEM) Euy(MFS) Euy(BEM)

24 23.6× 10−4 0.26× 10−4 17.17× 10−4 0.24× 10−4

48 20.8× 10−4 0.18× 10−4 10.9× 10−4 0.146× 10−4

96 1.28× 10−4 0.13× 10−4 0.43× 10−4 0.0096× 10−4

plate in BEM as well. In the case of plain stress conditions, the displacement formulation
provides an accurate solution.

As shown in Table 4, the mean error is calculated for each method with different
numbers of nodes, the indices ux and uy indicate the horizontal and vertical displacements,
respectively. The results indicate that both methods provide accurate and precise answers.
With an increase in the number of nodes, the accuracy of the solutions will also increase.
Despite the fact that the rate of error for the two methods is practically negligible, the accuracy
or robustness of the BEM method has a distinct advantage over the fundamental solution
method. solution method.

3.2.2 A plate with a deep hole
Following the previous problem, the hole within the sheet has deepened, and the stress values
at points A and B will be analyzed. Fig. 11 presents the boundary conditions and geometry
of the example.
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Figure 11: Plate with much deeper hole.

(a) (b) (c)

Figure 12: Arrangement of source points and collocation points for a plate with a deep hole
with number of (a) 50; (b) 111; and (c) 213 nodes in MFS.

(a) (b) (c)

Figure 13: Arrangement of boundary nodes for a plate with a deep hole with number of (a)
50; (b) 111; and (c) 213 nodes in BEM.

Based on finite element software, a reference solution of stresses at points A and B has
been obtained. According to MFS, the appropriate arrangement of source and collocation
points yields a position parameter of 0.85 approximately. To solve this example, both methods
consider three distinct node arrangements, namely 53, 111, and 213 nodes. Figs 12 and 13
illustrate the arrangement of points in the BEM and MFS respectively. In MFS, it should be
noted that no nodes are placed in corners. Tables 5 and 6 provide a comparison between BEM
and MFS results at point A and B. In order to determine the efficacy of BEM, two types of
elements were used namely linear and quadratic.

It can be seen from Tables 5 and 6 that BEM has superiority over MFS, particularly when
considering quadratic elements. Several configurations were examined to determine the effect
of the location parameter on the results accuracy. The location parameter plays a significant
role in determining the stress at point A, as shown in Table 7, in MFS a slight change in this
parameter will have a significant impact on the results. Based on the results of this example,
it can be concluded that MFS is less efficient than BEM, especially with a small number
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Table 5: Comparison of stress values for a plate with much deeper hole at point A.

σx(BEM)

Node Linear Quadratic σx(MFS)

53 570.0 901.2 496.27
111 762.7 765.2 749.0
213 780.2 780.5 786.3

Reference solution 768.3 768.3 786.3

Table 6: Comparison of stress values for a plate with a deep hole at point B.

σx(BEM) σy(BEM) τxy(BEM)

Node Linear Quadratic σx(MFS) Linear Quadratic σy(MFS) Linear Quadratic τxy(MFS)

53 131.2 135.06 120.33 138.7 152.10 62.98 59.9 67.8 29.96
111 135.6 135.96 134.50 149.1 150.52 140.5 67.3 68.4 64.00
213 135.8 135.98 135.98 150.1 150.50 148.9 68.1 68.3 68.10

Reference 139.6 139.6 139.6 152.5 152.5 152.5 71 71 71

Table 7: Comparison of stress values of a plate with much deeper hole at point A for different
location parameter values.

Location parameter of source points σx(MFS)

0.89 63.93
0.85 538.69
0.82 107.98
0.80 438.23
0.70 638.35
0.67 598.12
0.64 280.41

of collocation and source points where it may be physically impossible to achieve a proper
arrangement satisfying the location parameters constraint. However, BEM does not have this
limitation and is therefore able to provide more accurate results in this regard, particularly
when quadratic elements are used.

4 CONCLUSION
In this study, BEM and MFS were compared with regard to potential problems and elasticity
problems. The efficiency of the two proposed methods was assessed over a variety of
boundary domains, including simple and concave boundaries. The major challenge facing
MFS is to arrange source points and collocation points in such a way that reliable results
will be obtained. A location parameter was defined to determine the optimal location of
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source points relative to each other and the boundary of the problem. According to the results,
both methods provide accurate results for simple geometry. In complex geometries, such as
in concave domains (where stress concentration is high), the MFS is not as effective as it
should be. With such a small number of source points, it is not possible to satisfy the location
parameter and reach the desired location parameter. Therefore, the results of the analysis
are unreliable. Despite this, BEM has the potential to provide accurate results, even if the
geometry of the problem is complex, and quadratic elements will enhance this accuracy. Since
input data preparation in both proposed methods occur only at the boundary of the problem,
it can be concluded that BEM and MFS reduce simulation time and input data compared to
domain types of the problem such as the finite element method.
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