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ABSTRACT
The collocation boundary element method has recently been entirely revisited by the author. Arbitrary
rigid-body displacements, as for elasticity, are naturally taken into account, and traction force
parameters are always in balance independently of problem scale and mesh discretization. For
generally curved boundaries, the correct definition of traction force interpolation functions enables
the enunciation of a general convergence theorem, the introduction of patch and cut-out tests, and,
not least, a considerable simplification of the numerical implementations. Simple code schemes for
the 2D formulation are proposed exclusively in terms of Gauss–Legendre quadrature for arbitrarily
high – actually only machine-precision dependent – computational accuracy of results independently
of a problem’s geometry and topology. On the other hand, the complex-variable formulation of the
problem leads to more simplicity of implementation and numerical results that seem less liable to
round-off errors. We propose in this contribution the comparative assessment of the real- and complex-
variable formulations regarding coding efficiency, computational effort, error estimation, and numerical
precision and accuracy of results for applications that are topologically highly challenging, with source-
field distances in the subnanometer range.
Keywords: boundary elements, consistent formulation, machine-precision integration, complex-
variable formulation.

1 INTRODUCTION
We have recently proposed the entire reformulation of the collocation boundary element
method (CBEM), which keeps its essence, as obtainable from the application of Somigliana’s
identity, but introduces paramount features that go back to the initial consistency concerns
related to the variationally, hybrid boundary element method [1], incorporates concepts
related to the adequate treatment of quasi-singularities for 2D problems [2], [3], revisits
the formulation in terms of spectral consistency assessments [4], [5] and ends up with the
introduction of important code-implementation improvements [6]. All these developments
have culminated in the comprehensive proposition of the CBEM [7], in general, with 2D
developments laid down in Dumont [8], [9]. Although we have introduced in Dumont [2]
and Dumont and Noronha [3] the paradigm-shifting concept of complex quasi-singularity
poles (in terms of the boundary parametric variable ξ that may eventually assume values
ξs = a± ib related to a general source point s), all developments had been proposed in
terms of Cartesian real variables (x, y), for 2D problems. Quite recently, we have envisaged
that the complex-variable reformulation of Dumont [8], thus in terms of z = x+ iy, may
eventually lead to overall simplification of the implemented code and contribute to meliorate
the unavoidable round-off-error issues that arise in applications to extremely challenging
topologies [10].

This short contribution conveys the comparative assessment of the real-variable
formulation of Dumont [8] and its complex-variable counterpart proposed in Dumont [10].
Owing to space restrictions we only address the evaluation of stress results at internal
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points, which is actually the most critical issue one may face particularly when dealing
with extremely small source-to-field distances. Interested readers are referred to the abundant
details given in Dumont [8]–[10].

2 BASIC PROBLEM OUTLINE
Whether using real or complex variables, the basic system matrix to be solved in the frame
of the CBEM has the format

H(d− dp) = G(t− tp)ad (1)

In this equation, H is the square, double-layer potential matrix of order nd = 2nn, for 2D
elasticity and the problem discretized with nn nodal points, and G is the single-layer potential
matrix with nd rows and nd + 2ne columns, as we code for ne elements of any order oe,
in principle taking into account that the left and right tangents at a nodal point connecting
two elements are different. As laid down in Dumont [5], [7], we are assuming just for the
sake of elegant and compact formulation that some particular solution of interest is known
– whether or not related to non-zero body forces – and may be approximately expressed
as boundary nodal displacement dp and traction tp data. The problem’s primary boundary
displacement and traction parameters are d and t, which are in part known and in part to be
obtained in the frame of a general mixed-boundary formulation. As comprehensively assessed
in Dumont [4], [7]–[9], we write for consistency that the traction (t− tp)ad is admissible, in
equilibrium with the applied domain forces: this follows the same mathematical/mechanical
principle that, since for a finite domain rigid-body displacement amounts of (d− dp) cannot
be transformed into forces, also non-equilibrated forces should not be transformed into
displacements.

3 EVALUATION OF STRESS RESULTS AT INTERNAL POINTS

3.1 Real-variable formulation

We follow the notation given in Dumont [8] to represent stress results at an internal point s
according to the expression given, for instance, in Brebbia et al. [11], although with some
index transposition while always keeping in mind the traction-force interpolation given by
eqn (20) of Dumont [7], for integration carried out along successive boundary segments of Γ
in terms of the parametric variable ξ ∈ [0, 1]:

σis = σpis + |J |(at `)
∫

Γ

u∗is`N
oe

(at `) dξ (t` − tp` )ad

−
∫

Γ

p∗isnN
oe

(at n)|J | dξ (dn − dpn) (2)

In this expression, σis is the symmetric stress tensor and

u∗is`≡ −σ∗is`=
(1−2ν)(r,iδs` + r,sδi` − r,`δis) + 2r,`r,ir,s

4π(1− ν)r
(3)

p∗isn = G
(1− 2ν)r,nδsi + ν(δnsr,i + δnir,s)− 4r,ir,sr,n

π(1− ν)r2

∂r

∂n

+
G

2π(1− ν)
{2ν (r,ir,nns + r,sr,nni)− (1− 4ν)δsinn

+ (1− 2ν)(2r,ir,snn + δnins + δnsni)} (4)
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In these equations, repeated indices mean summation and a comma (,) in the subscript
means derivative with respect to the corresponding Cartesian direction 1 or 2, referring to
x or y. The unit normal to the boundary is characterized by n and its Cartesian projections
are also given. The Kronecker delta is given as δsi, for instance. Boundary displacement
and traction are approximated along successive segments by the scalars Noe

(at n)(ξ) and
|J(at `)|Noe

(at `)(ξ)/|J(ξ)|, in terms of known nodal (dn − dpn) and locus (t` − tp` )ad data –
according to the important, corrected, formulation of the CBEM proposed in Dumont [5], [7].
The superscript oe stands for the polynomial interpolation order, here implemented for linear,
quadratic, cubic and quartic elements. Since repeated indices mean summation, we use (at n)
and (at `) in eqn (2) to indicate that the shape functions refer to node n and locus ` [7]. The
interpolation functionsNoe

(at n) andNoe

(at `) have local support: the boundary integration along
Γ prescinds the specific indication of sum over segments. The tractions are assumed to be
admissible, that is, in balance with applied domain forces (whether void or not), which is the
reason of the assigned subscript ( )ad [4], [7]. Moreover, as proposed in Dumont [7], [8], we
already take into account eventual particular or body-force solutions, characterized by the
superscript ( )p, whenever this is mathematically feasible [7].

In the code implementation of Dumont [8], we express the stress tensor as a vector
σ ≡ 〈σx σy τxy〉T, and u∗is` and p∗isn as arrays

u∗is` =
1

2π (1− ν)

0.5− ν
r2

 x −y
−x y
y x

+
1
r4

 x3 x2y
xy2 y3

x2y xy2

 (5)

p∗isn =
G

2π(1− ν)|J |

 1
r2

 y′ −x′
y′ −x′
−x′ y′

+
1
r4

4x2y′ − 2xyx′ 2xyy′
−2xyx′ −4y2x′ + 2xyy′
2xyy′ −2xyx′


− 8(xy′ − yx′)

r6

 x3 x2y
xy2 y3

x2y xy2

 (6)

where, quoting [8], “nx = y′/|J | and ny = −x′/|J |. In these expressions, the rows
correspond to the elements of the stress vector defined above and the columns to the Cartesian
directions represented by s. The subscripts ` and n are implicit as the reference to the field
points related toNoe

(at `) andNoe

(at n) for the function multiplications and eventual integrations
indicated by eqn (2). Moreover, the matrix components have been manipulated in order to
make the quasi-singularity terms 1/r2, 1/r4 and 1/r6 explicit (they do not necessarily reflect
the actual quasi-singularity powers), which is paramount for the subsequent developments.”

3.2 Complex-variable formulation

It is proposed in Dumont [10] the complex-variable expression for stress results at internal
points {

σx + σy

σy − σx + 2iτxy

}
s

=

{
σpx + σpy

σpy − σpx + 2iτpxy

}
s

+
|J |(at `)

4π(1−ν)

∫
Γ

Noe

`


1
z

1
z̄

− z̄

z2
−3− 4ν

z

dξ

{
(t− tp)ad
(t̄− t̄p)ad

}
`
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− iG

2π(1−ν)

∫
Γ

Noe
n


z′

z2
− z̄
′

z̄2

z̄′

z2
− 2

z̄z′

z3
− z
′

z2

dξ

{
d− dp

d̄− d̄p

}
n

(7)

which is just a very compact way of writing eqn (2) – thus comprising all subsequent,
auxiliary expressions. The displacement and traction parameters at nodes n and loci ` are
complex values and their respective conjugate representations, as for displacements at a node
n: d = dx + idy . The stress components are advantageously arranged as shown on the left, so
that the cumbersome, real-variable arrays of the former section become the indicated simple
expressions of the complex z = x+ iy and its conjugate. As developed in Dumont [10],
we do not need to resort to the literature on complex-variable elasticity to arrive at the
above equation, although the compact stress representation is certainly an inspiration from
Muskhelishvili [12].

Besides its simplicity, there are some added advantages in using the latter expression. In
fact, as shown in Dumont [10], we no longer need to distinguish between real and complex
quasi-singularity poles, which simplifies the code implementation substantially. However, the
most important advantage is that, as we see in the latter expression, the singularities we have
to deal with are of the type 1/z, 1/z2 and 1/z3 in terms of the complex pole ξs = a+ ib,
whereas in the former section, as given in the last paragraph, we may have quasi-singularities
up to 1/r6 of the complex double-pole ξs = a± ib. Apart from that, most of the conceptual
and code-implementation developments of Dumont [8] are used in Dumont [10].

The complete developments and code-implementation issues for 2D potential and
elasticity problems are given in Dumont [8] and [10] in terms of real and complex variables,
and are outlined above rather briefly for the most critical case of evaluating results at internal
points. Numerical assessments are shown in the following for a simple problem that is made
challenging on purpose, as well as for a second, actually extremely challenging, problem.

4 APPLICATION TO AN INFINITE PLATE WITH A HOLE
Fig. 1 shows on the left the geometric discretization of an infinite plate with a hole of unit
radius. The solution for a uniform stress field σxx = 1, σyy = τxy = 0 applied at infinity,
according to Sadd [13], for instance, is compactly expressed in polar coordinates as

σrr =
1
2

(
1− a2

r2

)
+

1
2

(
1− 4

a2

r2
+ 3

a4

r4

)
(2cos2θ − 1)

σθθ =
1
2

(
1 +

a2

r2

)
− 1

2

(
1 + 3

a4

r4

)
(2cos2θ − 1) (8)

τrθ =
(
−1− 2

a2

r2
+ 3

a4

r4

)
sin θ cos θ

The maximum stress value is σmax = σθθ(r = a, θ = ±π/2) = 3, and we also obtain
the highest normal stress in the vertical direction σθθ(r = a, θ = 0) = −1. For the sake of
reference, we express on the right in Fig. 2 the analytical stress results σx, σy , τxy of eqn (8)
at the 18 internal internal points of the open domain given on the left – and as detailed next –
with the indicated lines just connecting points.

As indicated in the figure, we discretize the circular cavity with 10 quartic elements and
40 equally spaced, equidistant nodes from the center – not taking advantage of the double
symmetry. The main source of errors in this simulation is related to the fact that the circular
surface is modeled with quartic polynomial elements, with non-smooth transition between
elements. In fact, we measure for nodes 1, 5, 9, 13, 17, 21, 25, 29, 33 and 37 the same lack of
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Figure 1: Infinite plate with a circular hole (left) modeled as 10 quartic elements; and
analytical stress results evaluated at the indicated 18 internal points.

smoothness, with (θ+ − θ−)/2π ≈ 0.4999900076, when it should be exactly 1/2. Then, we
should not expect in our numerical evaluations a relative accuracy error smaller than about
0.00001998. When evaluating results, points along a horizontal axis on the left in Fig. 1 that
goes through nodes 21 and 1 should present the largest errors, as there is some angularity
there. Tangents about nodes 11 and 31 are horizontal and we should expect the smallest
errors measured along a vertical from there. Nodes 6, 16, 26 and 36, which are located at
angles multiple of π/4 of inclination, do not have tangents inclined of exact multiples of
π/4, since they are not middle nodes of the quartic elements. Such lacks of polar symmetry
are intentional in order to have simulation errors introduced in our model. The figure also
indicates three series of 10 points, each, at which stress results are to be evaluated. Points 1,
11 and 21 are 0.6 + 10−10 distant from the center, with interpolated points up to the respective
points 10, 20 and 30, which are at a distance 1.5 + 10−10 from the center, in such a way that
points 1 . . . 4, 11 . . . 14 and 21 . . . 24 are actually internal to the cavity, that is, external in
relation to the open domain of interest. We intentionally set points 5, 15 and 25 inside the
open domain and just 10−10 distant from the respective nodes 1, 31 and 36. Besides the
geometry errors, we should expect some round-off errors related to these close points, as
assessed next.

In both real- and complex-variable codes we use 8 Gauss–Legendre points per element,
thus a total of 80 integration points for the whole problem. We also use 25 digits of precision
in the Maple implementation (Maplesoft, a division of Waterloo Maple Inc., Waterloo,
Ontario). This is by far more than necessary in the evaluation of matrices G and H, to be
used in eqn (1). In fact, in the precision evaluation |HW −W|, where W is a matrix with
the three rigid-body displacements that the discretized circular hole may undergo, we obtain
the global relative error of just 10−18 according to both codes. On the other hand, owing
to the very small source-to-boundary distance 10−10, as described above, severe round-off
errors may be expected in the evaluation of stress results at points 5, 15 and 25.

Eqn (1) is solved for the displacement difference (d− dp) considering that t = 0 and
tp corresponds to the proposed far stress field (σxx = 1, σyy = τxy = 0). Stress results
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are subsequently evaluated according to eqns (2) and (7). Since the simulated problem
corresponds to an applied constant stress field, the solution is considered exact for the
proposed geometry, according to Theorem 1 of Dumont [7], within the adopted precision
digits and numerical quadrature errors of the regular integrals involved. The distance
threshold (relative distance from a source point to an element chord) is set equal to 2, in order
to consider the source point sufficiently close as to require analytical corrections, according to
Dumont [8]–[10]. This means that the numerical evaluations cannot be more precise than
provided by the numerical quadrature – also considering the eventuality of round-off errors.

The graphs of Fig. 2 show the absolute errors – as compared with the analytical values
for the circular cavity, according to eqn (8) – of the numerical stress results σxx, σyy and
τxy at the 30 external and internal points described above. The dash, blue lines correspond
to the real-variable evaluations of Section 3.1, and the solid, black lines correspond to the
complex-variable evaluations of Section 3.2. Actual accuracy is assessed for results at the
cavity points 1–4, 11–14 and 21–24, which should be zero regardless of boundary geometry
approximation: the absolute errors – in general smaller than 10−6 – are attributable to the
relatively low order of Gauss–Legendre quadrature for the large, high-order quartic elements,
which may be improved by resorting to a higher quadrature or maybe by choosing a close/far
threshold larger than 2. This is, however, not a useful measure, as there is already a larger
geometry error in the piece-wise representation of the circular hole, as assessed above. And
there is an information to draw from these assessments: our accuracy threshold is about
10−6, which should be our precision threshold, as well. We see in Fig. 2 that the real- and
complex-variable simulations deliver approximately the same accuracy of results, except that
real-variable round-off-errors become excessively large at the critical, close point 5, while
just reasonably large at points 15 and 25. On the other hand, the largest complex-variable,
absolute errors of (σxx, σyy, τxy) at point 5, close to an angularity and to be compared

 xyErrors  yyErrors  xxErrors 

Figure 2: Absolute errors in the numerical evaluation of stress results σxx, σyy, τxy at 30
internal/external points for the infinite plate with a hole of Fig. 1, in terms of
complex (solid, black lines) and real variables (dash, blue lines).

60  Boundary Elements and Other Mesh Reduction Methods XLVI

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 135, © 2023 WIT Press



with (0,−1, 0), are (2.19× 10−4, 4.92× 10−4, 2.08× 10−4). At point 15, close to node
31 of a smooth surface and for stresses to be compared with (3, 0, 0), these errors are
(6.81× 10−6, 1.77× 10−6, 3.78× 10−21). The errors at close point 25, for stresses to be
compared with (0.5, 0.5,−0.5), are (1.35× 10−5, 1.25× 10−7, 3.87× 10−6).

5 APPLICATION TO A TOPOLOGICALLY EXTREMELY CHALLENGING PROBLEM
Fig. 3 represents a two-dimensional domain (about 25 units across) with some challenging
topological features, to be subjected to a series of elastic fields, as described in Dumont [10],
which is on the other hand a development of a simpler numerical model proposed in
Dumont [9]. Readers are referred to these papers for the complete description of the problem.
It is worth remarking that the cusp at node 1 has an internal angle of about 10−8 rad, the
external angle at node 17 is of about 10−13 rad, and the strip of material between the cavity
and the external boundary is only about 10−4 unities wide. This elastic body is subjected
to two constant and a series of four linear, quadratic, cubic, quartic and quintic polynomial
fields, thus a total of 22 fundamental solutions of the elastostatics problem for homogeneous,
isotropic material with shear modulus G = 80000 and Poisson’s ratio ν = 0.2. The indicated
crosses in Fig. 3 are a total of 41 – in part internal and in part external – points at which
stress results are to be numerically evaluated for the applied stress fields. Some of these
points are very close to the boundary, as described in Dumont [9], [10] and to be assessed
next. Most important, we generate between internal point 30 and node 69, which are visually
indistinguishable from each other in the figure, a series of 10 points that approach node 69
at geometrically decreasing distances, as indicated in the first row of Table 1, which is a
reproduction from Dumont [10]. A similar series of 10 very close points to node 17 is also
generated, with the distances indicated in the second row of this table. If we consider all

1

17

25

37

45

49

53

57 61

65

69
77

85





Figure 3: Two-dimensional figure with some challenging topological issues and to be
subjected to a series of elastic fields, as reproduced from Dumont [10].
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Table 1: Distances from very close points to their reference nodes in a mesh with 92
nodes, Fig. 3, as detailed in Dumont [10], from which this table is reproduced.
The internal points 30 and P0, with coordinates ≈ (16.27636, 17.35048) and
(7.19999, 14.00001), are close to nodes 69 and 17, respectively. The indicated
distances refer to internal points numbered 42–51, on the left, and 52–61.

Internal 30→ 69 Internal P0→ 17

5.8947× 10−17 1.3120× 10−18

1.2378× 10−15 2.7552× 10−17

2.4816× 10−14 5.5235× 10−16

4.9639× 10−13 1.1048× 10−14

9.9280× 10−12 2.2097× 10−13

1.9856× 10−10 4.4194× 10−12

3.9712× 10−9 8.8388× 10−11

7.9424× 10−8 1.7677× 10−9

1.5884× 10−6 3.5355× 10−8

3.1769× 10−5 7.0710× 10−7

geometric data given in m, the smallest distances are actually about one thousandth of a
typical proton size! As remarked in Dumont [10]: “This has absolutely no sense in terms of
continuum mechanics but the mathematics must work nevertheless.”

Dumont [9] deals with a similar problem to the one of Fig. 3 in terms of real variables,
which is taken from Dumont [10] for a series of assessments of consistency and accuracy
of eqn (1) as well as for displacement (not shown here) and stress results at internal points,
using eqns (2) and (7), for different boundary element orders, numbers of Gauss–Legendre
quadrature points, and precision digits. Papers [9] and [10] also have complete problem
formulation and numerical assessments for potential problems.

We assess in the following the stress results for two numerical models considered in
Dumont [10] – but not in Dumont [9] – in order to compare the proposed approaches
directly. The first model is called 46 2 25 4 to characterize the use of ne = 46 elements
of order oe = 2 (quadratic), for evaluations with 25 digits of precision and ng = 4 Gauss–
Legendre quadrature points per element. As for the real-variable formulation, there is a
total of ne × oe = 92 nodes, as indicated in Fig. 3, thus for the square matrix H of order
2× 92 = 184 and the rectangular matrix G with 2× 92 = 184 rows and 2× (92 + 46) =
276 columns. The total number of Gauss–Legendre points is 46× 4 = 184. It is worth
repeating from Dumont [9] that a number of precision digits smaller than 20 would render
the present problem inconsistent, as there would be interpenetration of the boundary faces
adjacent to node 17.

A second model is called 23 4 50 8 to characterize the use of ne = 23 elements of order
oe = 4 (quartic), for evaluations with 50 digits of precision and ng = 8 Gauss–Legendre
quadrature points per element. Then, all numbers given for the former model apply here,
with the only – relevant – difference that 50 precision digits are used, and, of course, not
neglecting that quartic elements enable better modeling than double the number of quadratic
elements, as already assessed in Dumont [9] and [10].

The indicated matrix dimensions are actually not relevant for the only kind of numerical
assessments we are showing, namely, the evaluation of stress results at internal/external
points, according to eqns (2) and (7), for dpn = 0, tp` = 0, and the boundary displacement and
traction parameters dn and t` evaluated for the 22 polynomial fields of fundamental solutions.
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Figure 4: Errors in the evaluation of stress results along 61 internal/external points of
Fig. 3, generated for six groups of elasticity test fields for the mesh configuration
46 2 25 4, in terms of real (top) and complex (bottom) variables. The bottom plot
is a reproduction from Dumont [10].

Figs 4 and 5 show error results for stress evaluations at the 41 points marked as “+” in
Fig. 3 (of which points 2 through 8 and 40 are actually external), as well as for the very close
points numbered 42 through 61 referred to in Table 1, as given in the horizontal axes. Vertical
dashdot lines are drawn to mark the closest points 42 and 52. Relative errors are given in the
vertical log scale for groups of two constant displacements solutions (0th) and sets of four
linear, quadratic, cubic, quartic and quintic solutions (1st, 2nd, 3rd, 4th and 5th, respectively).
As given in Theorem 1 of Dumont [7] and pointed out in Dumont [9] and [10], the numerical
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Figure 5: Errors in the evaluation of stress results along 61 internal/external points of
Fig. 3, generated for six groups of elasticity test fields for the mesh configuration
23 4 50 8, in terms of real (top) and complex (bottom) variables. The bottom plot
is a reproduction from Dumont [10].

evaluations for constant and linear solutions must correspond to analytical solutions of the
problem – although within precision digits, number of Gauss–Legendre quadrature points
and eventual round-off errors. Then, these solutions give the means of assessing the precision
threshold of a numerical simulation. As indicated, the error results for constant and linear
displacement fields are multiplied by powers of 10 in order to accommodate a better error
resolution in the plots. In both figures the top graphs refer to evaluations in terms of real
variables, to be compared with the bottom results in terms of a complex variable.
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The real-variable and complex-variable results in each figure are comparable in terms of
precision (results for 0th and 1st) and accuracy (for higher displacement fields), except for
points that are too close to the boundary, as round-off errors take place and may become
completely out of limits. We see in the top plot of Fig. 4 that real-variable results are
reliable only for distances larger than about 10−7 (which, for unities in m, are smaller than
a micrometer), whereas for the complex-variable evaluations we obtain reliable results for
subnanometer distances about 10−10. And that for “only” 25 digits of precision!

Fig. 5 presents – for in principle the same computational cost as for the previous
evaluations – results that are several orders of magnitude more precise and one order of
magnitude more accurate (a not lesser remark is that cost increases for the 50 digits of
precision). This is related to the p-refinement from quadratic to quartic elements [9], [10].
Reliable results for the real-variable evaluations are achieved for distances that are orders of
magnitude smaller than before, and this is to be credited to the large number of precision
digits. On the other hand, results for internal points close to the (badly locally discretized)
reentrance tend to be completely out of limits, as well as results for point 40, which is
just outside the domain, tend to be more inaccurate, which is also related to the poor local
mesh discretization. On the other hand, it is highly remarkable that the complex-variable
evaluations shown on the bottom of Fig. 5 lead to reliable results up to the incredibly small
distance of 10−18. In fact, we see that the precision assessments for constant and linear
displacement fields – and, then, Theorem 1 of Dumont [7] – holds just fine. Observe that here,
too, the external point 40 is close to a locally coarse mesh, and consequently with relatively
worse results. Moreover, observe that results at points 42 through 51 (piece-wise horizontal
plots) are orders of magnitude more accurate than results at points 52 through 61 for the very
simple reason that the corresponding local mesh – adjacent to node 17 – is very coarse.

6 CONCLUDING REMARKS
This brief outline and the simple, comparative numerical assessments show that the paradigm-
shifting developments proposed in Dumont [7]–[9] may be still improved – in terms of code
simplicity, cost and overall robustness – if we resort to a complex-variable formulation [10],
as for 2D elasticity. The numerical illustrations refer once more to a highly important
convergence Theorem 1 [7]; separately assess precision, accuracy, and liability to round-off
errors; show that mesh refinement is required only to improve mechanical simulation, not for
mathematical evaluations; and also show that we should not shun extreme cases of topological
issues. A not lesser contribution is the illustration of the way three distinct geometric entities
must be properly handled: boundary nodes n (for displacements), boundary loci ` (to which
tractions are referred), and domain points s, at which we collocate the singular sources.
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