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ABSTRACT
This paper is part of a research work to implement, test, and apply a novel numerical tool that can
simulate on a personal computer and in just a few minutes a problem of potential or elasticity with
up to tens of millions of degrees of freedom. The first author’s group has already developed their
own version of the fast multipole method (FMM) for two-dimensional problems, which relies on a
consistent construction of the single-layer potential matrix of the collocation boundary element method
so that ultimately only polynomial terms (as for the double-layer potential matrix) are required to be
integrated along generally curved segments related to a given field expansion pole. The core of the
present paper is the mathematical assessment of the double expansions needed in the 3D FMM. The
3D implementation is combined with a particular formulation for linear triangle elements in which all
integrations for adjacent source point and boundary element are carried out analytically. As a result,
numerical approximations are due exclusively to the FMM series truncations. This allows isolating and
testing truncation errors incurred in the series expansions and thus for the first time properly assessing
the mathematical features of the FMM, as illustrated by means of two examples. Adaptive numerical
quadratures as well as the complete solution of a mixed boundary problem using a GMRES solver, for
instance, are just additional tasks and, although already implemented, are not reported herein.
Keywords: boundary elements, fast multipole, machine-precision integration, potential problems, three-
dimensional problems.

1 INTRODUCTION
The FMM [1]–[4] is a powerful tool for dealing with very large computational mechanics
problems. Our team has already developed a consistent algorithm for general 2D
problems [5], [6] with machine-precision integration schemes. We are now working on 3D
problems [7], [8] with the combination of analytical evaluations for flat boundary elements,
in the case of small source point to element distances [9], [10], and a very convenient adaptive
quadrature scheme for intermediary distances [8], [11], [12], that seems to keep being ignored
in the technical literature. This paper lays out some conceptual aspects that should make
the FMM more consistent and understandable mathematically: we are driven by simplicity.
Although the implementation issues of the complete boundary element formulation are not
shown, basic accuracy assessments by means of two rather academic examples shall shed
light on the practical application possibilities opened up in the present framework.

2 PROBLEM FORMULATION
We are looking for the expansion of the fundamental solution – for three-dimensional
problems – about a pole xc that is at the distance r = |x| from the source point xs, that
is, x = xs − xc in the classical literature notation, and to be evaluated at a field point xf at
a distance ρ = |y| to the expansion pole, that is, y = xf − xc (see the left drawing in Fig. 1,
which gives the vector orientations we are following in the developments):

u∗(xf − xs) ≡
1

4π |xf − xs|
=

1
4π

N∑
n=0

n∑
m=−n

S̄n,m(x)Rn,m(y) +O
(
(ρ/r)N+1

)
, (1)
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Figure 1: Basic scheme of an expansion about a pole xc and schemes for further expansions
about a field pole x′c and a source pole xL.

up to a given level N of expansion and truncation order O
(
(ρ/r)N+1

)
. This may be

immediately inferred from the one-dimensional expansion, for instance: 1/(xf − xs) ≈
N∑
n=0

(xc − xf )n/(xc − xs)n+1 +O
(
((xc − xf )/(xc − xs))N+1

)
. In the above equation,

Sn,m(x) =
(n−m)!Pmn (cos θ)eimφ

rn+1
, Rn,m(y) =

Pmn (cosβ)eimα

(n+m)!
ρn

Pmn (x) =
(1− x2)m/2

2nn!
dn+m

dxn+m
(x2 − 1)n,

(2)

where Pmn (x) are associated Legendre functions (polynomials). Both Sn,m(x) and Rn,m(x)
are spherical harmonic functions. As reported by Gumerov and Duraiswami [2], the function
name “S” above stands for source or sender and, coincidentally, also for singular (as r → 0),
whereas “R” means receiver as well as regular, which is much appropriate. According
to the notation in eqn (1), each level n = 0, 1, . . . , N comprises 2n+ 1 terms. However,
Sn,−m(x) = (−1)mS̄n,m(x) and Rn,−m(y) = (−1)mR̄n,m(y), m = 1 . . . n, so that eqn
(1) is actually implemented more compactly. The expressions of Sn,m(x) and Rn,m(x) are
transformed to Cartesian coordinates in principle by solving for (r, θ, φ) and (ρ, β, α) in

x = xs − xc ≡ (x1, x2, x3) = < r cosφ sin θ, r sinφ sin θ, r cos θ >
y = xf − xc ≡ (y1, y2, y3) = < ρ cosα sinβ, ρ sinα sinβ, ρ cosβ > .

(3)

Moreover, using the complex notation x = x1 + x2i, y = y1 + y2i we are able to express
S̄n,m(x) and Rn,m(y) compactly in Cartesian coordinates, as illustrated for r2n+1S̄n,m(x)
and Rn,m(y) with m = 0 . . . n, n = 0 . . . 4:

1 . . . .
x3 x̄ . . .

−|x|2 + 2x2
3 3x̄x3 3x̄2 . .

−9|x|2x3 + 6x3
3 −3x̄(|x|2 − 4x2

3) 15x3x̄
2 15x̄3 .

9|x|4−72x2
3|x|

2+24x4
3 −15x̄x3(3|x|2−4x2

3) −15x̄2(|x|2−6x2
3) 105x3x̄

3 105x̄4.

(4)

1 . . . .
y3

1
2y . . .

− 1
4 |y|

2 + 1
2y

2
3

1
2yy3

1
8y

2 . .

− 1
4 |y|

2
y3 + 1

6y
3
3 − 1

16y(|y|2 − 4y2
3) 1

8y3y
2 1

48y
3 .

1
64 |y|

4 − 1
8y

2
3 |y|

2 + 1
24y

4
3 − 1

48yy3(3|y|2 − 4y2
3) − 1

96y
2(|y|2 − 6y2

3) 1
48y3y

3 1
384y

4.

(5)
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These expressions can be pre-evaluated for a large number N of expansion levels using
a symbolic software, such as Maple 15 (Maplesoft, a division of Waterloo Maple Inc.,
Waterloo, Ontario) – and some ingenuity – and stored in arrays (it is possible to apply a
recursive scheme that directly works with the numerical values of x and y [1], [8]). In spite
of the complex-variable notation, the indicated sum for every value of n in eqn (1) becomes
real. In fact, it has been checked that each expansion level n = 0 . . . N in eqn (1) corresponds
exactly to level n+ 1 of the multivariate Taylor series expansion of 1/4π|xf − xs| about xc,
resulting in the truncation error O

(
(ρ/r)N+1

)
, as indicated. We must only pay attention to

the orientation of the vector xc − xs, as shown in the left scheme of Fig. 1, which is just a
notation subtlety introduced in the technical literature on the subject.

3 EXPRESSION OF THE NORMAL GRADIENT TO THE BOUNDARY
Since ∂u∗/∂yf ≡ ∂u∗/∂y = −∂u∗/∂x ≡ ∂u∗/∂xs, the normal gradient to the boundary
may be expressed in terms of derivatives of either Rn,m(y) [1]–[3] or Sn,m(x), the latter a
more consistent proposition and slightly more accurate for less effort, as assessed next.

3.1 Expansion using derivatives with respect to the field point, according to the literature

An improved, compact complex notation of an otherwise classical approach starts with

∂Rn,m(y)
∂y1

+ i
∂Rn,m(y)

∂y2
=
{
−Rn−1,m+1(y) if − n ≤ m ≤ n− 2

0 otherwise

∂Rn,m(y)
∂y3

=
{
Rn−1,m(y) if − n+ 1 ≤ m ≤ n− 1

0 otherwise . (6)

Then, making use of the notation ~n =< nx, ny, nz > as well as of n = nx + iny ⇒ n̄ =
nx − iny for the components of the normal vector to the boundary, the normal gradient of the
potential field turns out after some manipulation [13] – and taking into account the indicated
constraints above – to be expressed as (numerical assessment in the next section)

q∗ = −q∗xnx − q∗yny − q∗znz = k
∂u∗(xf − xs)

∂n
≡ k

[
∂u∗

∂xf
nx +

∂u∗

∂yf
ny +

∂u∗

∂zf
nz

]
≈ k

4π
<

N∑
n=1

(
n−2∑
m=−n

S̄n,m(x)Rn−1,m+1(y) n̄−
n−1∑

m=−n+1

S̄n,m(x)Rn−1,m(y)nz

)
. (7)

3.2 Novel proposition of derivatives expansion with respect to the source point

We propose to first pre-evaluate and store the expressions

∂S̄n,m(x)
∂x1

+ i
∂S̄n,m(x)
∂x2

= S̄n+1,m−1(x),
∂S̄n,m(x)
∂x3

= −S̄n+1,m(x), (8)

so that just one level more of terms Sn+1,m−1(x) needs to be evaluated. Then, the normal
gradient of the potential field to the boundary turns out to be expressed as simply as [13]

q∗ = −q∗xnx − q∗yny − q∗znz = k
∂u∗(xf − xs)

∂n
≡ −k

[
∂u∗

∂xs
nx +

∂u∗

∂ys
ny +

∂u∗

∂zs
nz

]
≈ k

4π
<

[
N∑
n=0

n∑
m=−n

(
−S̄n+1,m−1(x)n̄+ S̄n+1,m(x)nz

)
Rn,m(y)

]
. (9)
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3.3 Conceptual and numerical assessments

Eqns (7) and (9) make use of complex variables just for the sake of simplicity as well as of
code implementation, since all results should be real. The latter expression is not provided in
the technical literature, although it is conceptually more consistent and simpler to implement.
The advantage of using eqn (9) – as compared with eqn (7) – becomes evident also when it
comes to the recursive application given by eqn (12), next section, as we just keep the index
sequencing of Rn,m(y).

The developments in eqn (9), obtained from

∂u∗(xf−xs)
∂xf

=−∂u
∗(xf−xs)
∂xs

=
k

4π

N∑
n=0

n∑
m=−n

∂S̄n,m(x)
∂x

Rn,m(y)+O
(
(ρ/r)N+1

)
,

(10)
correspond to expanding the gradient of u∗(xf − xs) in terms of multivariate Taylor series
about xs and the indicated truncation order, as checked symbolically with the Maple code.

On the other hand, the technical literature shows the results that lead to eqn (7) as

∂u∗(xf − xs)
∂xf

=
k

4π

N∑
n=0

n∑
m=−n

S̄n,m(x)
∂Rn,m(y)

∂y
+O

(
(ρ/r)N

)
, (11)

although in general omitting that we are dealing with a truncation:N is just replaced with the
less informative∞. The latter is one order less accurate and more computationally intensive.

The accuracy of eqns (10) and (11) is assessed by means of two examples, both for xf =<
−11, 30.1, −30.1 > and xs = 0, but different expansion poles, xc =< −11, 30, −30.1 >
and xc =< −11, 40, −30.1 >, which leads to the ratios ρ/r ≈ 0.02317 and ρ/r ≈ 0.19515.
Derivatives ∂u∗(xf − xs)/∂xf in the Cartesian coordinates are obtained according to eqns
(10) and (11), forN = 0 . . . 11 expansion levels, and Frobenius error norms of the expansions
are plotted as shown on the left in Fig. 2. The solid, black lines are the expected error orders
O
(
(ρ/r)N+1

)
of a multivariate Taylor series expansion. The longdash, blue lines correspond

to eqn (10), and the dashdot, red lines follow from eqn (11). The better accuracy obtained with
eqn (10) (longdash, blue) coincides with just shifting horizontally to the left the results for
eqn (11) (dashdot, red), according to the truncation errors indicated in those equations.

4 EXPANSION OF Rn,m(xf − xc) ABOUT A NEW FIELD POLE xc′

The expansion ofRn,m(xf − xc) in any of eqns (1), (7), (9) for xf about a new pole xc′ may
be expressed exactly, since Rn,m(xf − xc) are polynomial terms, as

Rn,m(y)
←−−−−→

≡
n∑

n′=0

n′∑
m′=−n′

Rn−n′,m−m′(y0)Rn′,m′(y1)
←−−−−−−→

, |m−m′| ≤ |n−n′| , (12)

where y ≡ xf − xc = (xf − xc′) + (xc′ − xc) = y1 + y0 (see the middle drawing of Fig.
1). Observe that, for successive expansions of the marked term, we characterize a level
zero of expansion and follow from there on – expanding Rn′,m′(y1)

←−−−−−−→
for y1 ≡ xf −

xc′ = (xf − xc′′) + (xc′′ − xc′) ≡ y1 + y0 as the arguments of a recursive function –
until arriving at the highest level. The clause |m−m′| ≤ |n− n′| assures the existence
condition ofRn−n′,m−m′(y1), which is void otherwise. We have checked that this expression
is equivalent to the exact, multivariate Taylor series expansion of the polynomial terms

6  Boundary Elements and other Mesh Reduction Methods XLV

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 134, © 2022 WIT Press



Expansion levels N  Expansion levels n 

R
el
at
iv
e
er
ro
rs


R
el
at
iv
e
er
ro
rs


 averaged , ( )n mS x

0.19515r 

0.19515r 

0.02317r 

0.02317r 

Figure 2: Left: relative errors of eqns (10) and (11) (longdash and dashdot lines), using
(ρ/r)N+1 (solid) as reference, for N = 0 . . . 10; right: error assessments of eqn
(13) (dashdot and dot) referred to averaged values of

∣∣S̄n,m(x)
∣∣, n = 0 . . . 10

(solid), and compared with multivariate Taylor series (longdash and dash).

Rn,m(xf − xc) about xc′ . The above equation is not only consistent but also elegant, as
the structure of Rn,m(y)

←−−−−→
is preserved when recursively passed as a function argument. It is

given by Yoshida [1], eqn (B.11), and Liu [3], eqn (3.55), embeded in an “M2M (moment-
to-moment) translation”, and by Gumerov and Duraiswami [2], eqn (5.1.67), in the frame of
a “local-to-local” translation – no authors seem to make reference to the indicated existence
condition. This equation is to be applied recursively until we arrive at the highest level of the
hierarchical pole development, when we proceed with the required boundary integrations.

5 EXPANSION OF S̄n,m(xs − xc) ABOUT A NEW SOURCE POLE xL
The expansion of S̄n,m(xs − xc) in any of eqns (1), (7), (9) for xs about a new pole xL is

S̄n,m(x) =
N∑

n′=0

(–1)n
′

n′∑
m′=−n′

S̄n+n′,m+m′(x0)Rn′,m′(x1)
←−−−−−−→

+O
(

(|x1| / |x0|)min(N+1,N+2−n)
)
, n+ n′ ≤ N + 1, (13)

where x ≡ xs − xc = (xs − xL) + (xL − xc) = x1 + x0 (right drawing in Fig. 1). The
upper limit N in the indicated sum for n′ and the validity condition n+ n′ ≤ N + 1 take
into account the existence of pre-evaluated expressions for S̄n,m(xs − xc) up to levelN + 1,
as already needed in the expansion of eqn (8). We obtain either using symbolic Maple or,
better, checking numerically for random source, pole and local points that this expression
is equivalent to a multivariate Taylor series expansion with the indicated truncation order
O
(
(|x1| / |x0|)min(N+1,N+2−n)

)
, thus with decreasing accuracy as n increases, for a fixed

N . It is given as eqn (B.7) by Yoshida [1] and in eqn (3.57) by Liu [3] for an “M2L (moment-
to-local) translation”, and by Gumerov and Duraiswami [2], eqn (5.1.68), for a “multipole-
to-local” translation – although no authors seem to make reference to either the validity
condition n+ n′ ≤ N + 1 or the truncation error, as they always set ∞ as the upper limit

Boundary Elements and other Mesh Reduction Methods XLV  7

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 134, © 2022 WIT Press



for n′ and do not mention how the equation is implemented in practice. It is worth remarking
that the expansion of S̄0,0(x) is mathematically the same task proposed in eqn (1). If we have
to carry out further translations of Rn′,m′(x1)

←−−−−−−→
in eqn (13), eqn (12) is to be used and then no

more approximations take place (no need to ever refer to an “L2L translation” [1], [3]).
The graph on the right in Fig. 2 gives as reference averaged values

∣∣S̄n,m(x)
∣∣ ≡∑n

m=−n
∣∣S̄n,m(x)

∣∣/(2n+ 1), n = 0 . . . 10 plotted as a solid, black line for xs =<
−11, 30.1, −30.1 > and xc =< 0, 0, 0 >, and we check that the magnitude of S̄n,m
decreases with increasing n (although it is quite invariant with m = 0 . . . n for a fixed n). We
then carry out two numerical assessments, for expansions about xL =< −10, 30, −30 > and
xL =< −10, 40, −30 >, in such a way that |x1| / |x0| is either ≈ 0.02317 or ≈ 0.19515.
The longdash, blue lines are the relative errors for multivariate Taylor series expansions with
errorO

(
(ρ/r)N+1

)
, whereas the dashdot, red lines are relative errors obtained from eqn (13).

Although they increase with increasing n, such errors, when related to the largest, averaged
values

∣∣S̄0,m(x)
∣∣, tend to be much smaller, as given by the dash, blue and dot, red lines for

multivariate Taylor series and eqn (13), respectively [13].

6 SOME REMARKS ON OUR IMPLEMENTED FM SCHEME
We consider an important achievement to have shown that the source pole expansion of eqn
(13) leads to errors related to an increasingly truncated multivariate Taylor series, which
on the other hand affect terms that decrease in magnitude as n increases. Our 2D and 3D
implementations do not require such source pole expansions, since they follow the scheme
of Fig. 3, with as many field pole expansions as required, according to the recursive scheme
described in Section 4, thus involving no approximations other than the initial ones of eqn
(1) for the potential fundamental solution, or either eqn (7) or (9) for the corresponding
gradients (the latter one preferred, as already discussed). Accordingly, the highly condensed
data corresponding to boundary integrations and matrix-vector multiplications inherent to
the FMM are directly delivered to the source points, as shown in the figure, without making
use of the source pole expansions of eqn (13). In fact, such source pole expansions – while
introducing approximations errors, as assessed above – do not contribute to decreasing the
computational effort needed in delivering data to any single one of the possibly millions of
vector elements that come out from the FM matrix-vector multiplication, as convincingly
assessed by Novelino [14]. We acknowledge that this subject deserves deeper investigation
but it is worth remarking that our developments are in the frame of the so-called reverse FM

FieldSource

Figure 3: Proposed modified Middleman scheme with multilevel field pole expansions only.

8  Boundary Elements and other Mesh Reduction Methods XLV

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 134, © 2022 WIT Press



scheme [4], for the outermost loop in terms of boundary elements, which may be, up to now
only in the 2D case, curved and of arbitrarily high order.

7 TWO SIMPLE NUMERICAL ILLUSTRATIONS

7.1 Assessments for a convex domain

A convex domain in the shape of a tetrahedron as on the left in Fig. 4 is initially defined
(Level i = 0) in terms of four faces (F0 = 4 triangles) with vertex (V0 = 4 node) coordinates

Coords =

 1 2 3 4
−3 3 0 0
−1.5 −1.5 1.5 0

0 0 0 4

 , (14)

corresponding to E0 = V0 + F0 − 2 = 6 (non-oriented) edges, according to Euler’s theorem
for a convex tetrahedron, with faces then successively subdivided into four triangles each,
with the consequent creation of intermediate nodes, according to the scheme

(F0 = 4, V0 = 4, E0 = 6)
Fi = 4Fi−1, Ei = 2Ei−1 + 3Fi−1, Vi = Ei − Fi + 2, i = 1, . . . , 10. (15)

Increasingly refined meshes are considered for levels 2, . . . , 10, corresponding to
Vi =< 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154 > numbers of degrees of
freedom (NDOFs), thus up to about two millions. Then, a succession of FMM analyses is
carried out with the adjacency criterionNc = 1, 2 or 3 (Nc is the number of levels of children
elements that are considered adjacent to a given element, when source-element evaluations
are carried out directly in the CBEM framework instead or resorting to FM expansions) and
using N = 2, 4, 6, 8 or 10 Taylor expansion levels, according to eqn (1). The sketch on the
left in Fig. 4 illustrates the case for a level 3 mesh (V3 = 130), according to eqn (15). The

102 103 104 105 106 107

Number Vi of degrees of freedom
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104

105

106

107

108

St
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ag
e 

A
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tio

n 
(k

b)

Spatial data
Multipoles (N = 10)
Total

Figure 4: Red-colored elements, for Nc = 2, as the close ones to the green-colored element
on the front bottom in a mesh corresponding to V3 = 130 in eqn (15); and
storage allocation for expansion level N = 10, Nc = 3 and different values of
Vi, i = 4, . . . , 10.
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red-colored elements in this figure are the ones whose parents are adjacent to the parents of
the green-colored triangle at the bottom face, thus for Nc = 2. The FM scheme is applied
only for elements that are sufficiently far, that is, the gray-colored ones. The plot on the
right in Fig. 4 shows the amount of storage allocated in the FMM evaluations for multipole
expansions corresponding to N = 10, Nc = 3 and different values of Vi, i = 4, . . . , 10. All
evaluations are carried out in C++ running in Windows R© 10 using a desktop computer CPU
i7TM-4770 with 3.4 GHz and 16 GB RAM.

Accuracy of the implemented FM scheme is firstly assessed for a linear potential field u =
x+ y + z applied to the boundary of this tetrahedron, with nodal potentials d and gradient
parameters t evaluated for 2, . . . , 10 mesh refinement levels, according to eqn (15). We carry
out a control analysis in terms of the plain, but consistent conventional boundary element
method (CBEM) [9], [10], [15], with all integrals evaluated analytically, for which the basic
equation Hd = Gt should be exactly satisfied within machine precision. Since the code
is implemented in C++ with double precision, a relative error e = ‖Hd−Gt‖ / ‖Hd‖ >
10−15 is expected to occur: actually increasing round-off errors take place as Vi (NDOF)
increases. This is observed in the graph on the left in Fig. 5 for the error results marked as •
related to refinement levels 2 through 6 in eqn (15). These errors are our achievable, threshold
accuracy we can expect in the numerical simulations to come.

Observe that the implementations must start with refinement levels Nc+ 1 in eqn (15).
Since the T3 element exactly reproduces a linear potential field and all integrations are carried
out within machine precision, the reported errors are due solely to the expansion truncations
of the FM scheme, which are related to the truncation order at a given level N and ultimately
depend on Nc. Here too, round-off errors unavoidably occur with increasing NDOF, which
is reflected by the slightly ascending curves. These results lead to the accuracy threshold of
results achievable in an analysis for the considered domain submitted to a more complicated
potential field. In fact, a similar series of analyses carried out for an applied quintic field
u = 15x2y2z − 5z3(x2 + y2) + z5, with results displayed on the right in Fig. 5, shows that
accuracy convergence follows the pattern of the CBEM implementation until the threshold
of the left graph is achieved. For some of the analyses results would still improve if a more
refined mesh had been considered for higher values of Nc and N .

102 103 104 105 106

Number Vi of degrees of freedom
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10-10

10-5

100

Er
ro

r

CBEM
Nc = 1
Nc = 2

Nc = 3
N = 2
N = 4

N = 6
N = 8
N = 10
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N = 4
N = 6
N = 8
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Figure 5: FMM relative error results for applied linear u = x+ y + z (left) and quintic
u = 15x2y2z − 5z3(x2 + y2) + z5 potential fields for the example of Fig. 4.
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Figure 6: Computation times corresponding to the evaluations on the right in Fig. 5; and
FMM performance assessment in terms of error vs. time for some analysis cases.

Fig. 6 shows on the left the computational time required for the matrix-vector
multiplications Hd and Gt of the previous analyses. The computational times are proportional
to V 2

i and Vi for the CBEM and the FM operations, respectively, with time shifts perfectly
acceptable for higher values of Nc and N , which attests to the advantage of working in such
a computational framework even if just a few hundreds of degrees of freedom are required
in a simulation. We are using here either analytical – thus time-consuming albeit exact –
evaluations or the FMM scheme. Then, the indicated computational times can be lowered
if adaptive numerical quadrature is implemented [8], [10], [15] for intermediary distances.
The storage allocation is also relatively small and increases in proportion to the NDOF in a
loglog plot, as already shown on the right in Fig. 4. The ultimate assessment of the proposed
implementation is given in the graph on the right in Fig. 6, as we plot for the applied quintic
potential field the relative errors of the right graph in Fig. 5 against the computational time
on the left in Fig. 6 for a few values of Nc and N , also comparing with the CBEM. We see
that not only the required computational time using the FMM is much smaller for a required
error tolerance but also that the performance in terms of convergence rate is by far superior.

7.2 Assessments for a topologically challenging problem

Fig. 7 represents a very irregular 3D domain with a cavity, whose boundary is discretized with
16 linear triangle elements and 12 nodes. This is the FMM implementation of a numerical
example presented in [9], [10], [15] to illustrate the use of machine precision evaluations
for a topologically very challenging problem, which included the evaluation of potential and
gradient results at internal points, a task not reproduced here.

The Cartesian coordinates of these nodes are, using the first row for the node numbering, 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0.2 −1 −2 −1 0.5 −0.25 −0.3 −0.5 −0.4 0
−0.5 0.4 0 0.5 0 −0.5 −1 −0.55/3 −0.2 −0.1 −0.3 0
0.5 −0.5 1 1 −0.2 0.5 −1 0.05 0.3 0.4 0.5 0.6

 ,
(16)
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Figure 7: Very irregular domain with a cavity corresponding to the nodal and triangle
incidence data of eqns (16) and (17).

and the nodal incidence is given, for the elements listed in the first row, by 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 5 5 3 1 8 4 4 8 7 7 9 10 9 9
2 2 3 6 6 3 2 2 8 6 6 8 10 12 11 12
3 4 4 3 7 7 1 8 5 5 8 1 11 11 12 10

 . (17)

This corresponds to the level i = 0 discretization of a multiply connected domain made
up of two disconnected boundaries, to which Euler’s theorem applies in the modified form
E0 = V0 + F0 − 4. Nodes 9–12 in the level 0 refinement correspond to a cavity built up with
elements 13-16. It is worth observing that elements 6 (nodes [1 3 7]) and 12 (nodes [7 8 1])
are almost coplanar. Successive mesh refinements are implemented according to the scheme

(F0 = 16, V0 = 12, E0 = 24)
Fi = 4Fi−1, Ei = 2Ei−1 + 3Fi−1, Vi = Ei − Fi + 4, i = 1, . . . , 10. (18)

Since this is a topologically very intricate problem, hierarchically distant elements in the
mesh refinement are not necessarily distant geometrically, which demands an algorithm to
check for actual distances within the topological structure, as developed by Santana [8] on
the basis of Peixoto’s [6] implementation for two-dimensional problems.

Increasingly refined meshes are considered for levels 2, . . . , 8, corresponding to NDOFs
Vi =< 132, 516, 2052, 8196, 32772, 131076, 524292 >, thus up to half a million degrees of
freedom. In a similar way as in the previous example, a succession of FMM analyses is carried
out with the adjacency criterion Nc = 1, 2 or 3 and using N = 2, 4, 6, 8 or 10 multivariate
Taylor expansion levels, according to eqn (1).

Accuracy of the implemented FMM scheme is firstly assessed for a linear potential
field u = x+ y + z applied to the boundaries of the multiply connected body, with nodal
potentials d and gradient parameters t evaluated for Vi = 2, . . . , 8 mesh refinement levels,
according to eqn (18). We also carry out a control analysis in terms of the plain, conventional
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Figure 8: FMM relative error results for applied linear u = x+ y + z (left) and quadratic
u = x2 + y2 − 2z2 (right) potential fields to the domain of Fig. 7.

boundary element method (CBEM) with all integrals evaluated analytically [9], [10], [15],
for which the basic equation Hd = Gt should be exactly satisfied within machine precision.
As in the previous example, a relative error e = ‖Hd−Gt‖ / ‖Hd‖ > 10−15 is expected to
occur and actually increasing round-off errors take place as the NDOF increases. The CBEM
error results related to refinement levels 2 through 5 in eqn (18) are marked as • in the graph
on the left in Fig. 8. These CBEM and FMM errors are our achievable, threshold accuracy
we can expect in the numerical simulations to come.

Next, a series of analyses is carried out for an applied quadratic field u = x2 + y2 − 2z2,
with results displayed on the right in Fig. 8 showing that accuracy convergence follows the
pattern of the CBEM implementation until the threshold of the left graph is achieved. In
some cases results would still improve if a more refined mesh had been considered for higher
values of Nc and N , as in the previous example. By the way, the assessments of Fig. 6 would
be reproduced here almost unchanged, since for a very large mesh refinement the problem’s
topology no longer plays a remarkable role. Moreover, error results for higher-order potential
fields would show the same pattern for very large NDOFs.

8 CONCLUDING REMARKS
It was our intention not to lay out the intricacy and manifoldness of the FMM. Readers are
referred to Buchau [4], for instance, whose developments, more classical notation style and
bibliographic references may be seen as complementary to and elucidative of many FMM
features dealt with rather perfunctorily here.

This short communication focused on the conceptual aspects and the convergence issues
of the series expansions needed in the 3D fast multipole developments for potential problems
in a way that is not found in the technical literature. Important implementation details –
particularly with respect to the recursive application of eqns (10) through (13) and the not
lesser aspects of the iterative solution – GMRES, as implemented – of a practical problem
had to be left to a posterior publication: both items are part of [8]. Two very simple examples,
for which all integrals have been evaluated within machine precision, make evident how
important it is to have evaluation precision, computational effort and accuracy of results
completely under control. Owing to space restrictions we are not considering the application
of adaptive numerical integration [15][8], in which would be the typical course of action:
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analytical integration [9], [10], [15] when source point and element are very close (relative
distance to element about less than 1 [15]), numerical integration (Dunavant’s scheme [8],
[11], [15]) when source point and element are not too close but also not too far (decision
to be made in terms of Nc) and, otherwise, FM scheme. With such adaptive layout the
computational times showed in the graphs above would reduce drastically [8]. Our aim was
just to address some relevant conceptual FMM issues, which could be dealt with adequately
and isolated from numerical integration aspects and iterative solving schemes.
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