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ABSTRACT 
This paper introduces a formulation for 3D potential and linear elasticity problems that end up with 
the analytical handling of all regular, improper, quasi-singular, singular and hypersingular integrals of 
an implementation using linear triangle (T3) elements. The extension to flat Q4 and T6 elements is 
almost straightforward. Results at arbitrarily located internal points are also given analytically. The 
formulation is based on a generalized transformation to subtriangle coordinates that simplifies the 
problem’s description and enables the adequate interpretation of all relevant geometric features of a 
discretized boundary segment, so that it becomes possible to arrive at manageable analytical 
expressions of all integrals. The paper outlines the main concepts and computational features of the 
proposed formulation, based on an array with all pre-evaluated integrals required in an 
implementation. An example of 3D potential problems illustrates all particular cases and the most 
challenging topological configurations one might deal with in practical applications. The procedure 
may be easily implemented in a general boundary element code, as the usual numerical quadrature 
schemes for source points sufficiently far from the integration field remain applicable. There is a 
work in progress for the implementation of the procedure in the frame of a fast multipole algorithm. 
Keywords:  collocation boundary element method, numerical integration, analytical integration,  
3D problems. 

1  INTRODUCTION 
The collocation boundary element method (BEM) [1] has been recently reconceptualized 
by the first author for general 2D and 3D problems [2], with the proposition of a general, 
simple and unified procedure for the machine-precision treatment of all kinds of 
singularities that may occur in 2D steady-state potential and elastostatics problems, as an 
extension of [3], [4]. 
     The numeric issues for 3D problems are of a completely different nature [5]. The 
triangle-to-square coordinate transformation for the evaluation of improper integrals seems 
to have been firstly suggested for BEM applications in [6]. 
     Simple analytical results are arrived at for all kinds of integrals required for 3D steady-
state potential and elastostatics problems – for the boundary discretized with flat segments. 
This includes the evaluation of results at arbitrarily placed internal points, with 
hypersingularities also dealt with analytically. The case of a generally curved boundary 
segment is still not considered by the authors – and may not be mastered in the present 
framework. Although the proposed developments apply directly to elastostatics problems, 
space restrictions force us to draw attention only to potential problems. 

2  PROBLEM FORMULATION 
The following developments, as outlined in [5], apply to the adequate evaluation of 
integrals that embed improper, singular or quasi-singularities. The source point 0 is 
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indicated in Fig. 1(c), where 2 2 2
0 0 0( ) ( ) ( )r x x y y z z       is the distance from the 

singularity (0 or source) point  0 0 0( , , ) ( , ), ( , ), ( , )s s s s s sx y z x y z       to a generic (F or 

field) point    , , ( , ), ( , ), ( , )x y z x y z       in Cartesian coordinates, expressed in terms 

of the indicated natural triangle coordinates  [0,1 ], [0,1]      in Fig. 1(a) as well as 

 , [0,1]    for the quadrilateral in the centre. 

 

 

(a) (b) (c)

Figure 1:   (a) Triangle; and (b) Quadrilateral elements described with two different 
systems of natural coordinates, ( , )   and ( , )l l  , for an in-plane singularity 

P( , )a b   ; (c) Shows the general problem in the Cartesian space for a 

quadrilateral element with a quasi-singular source 0. 

     According to this proposition, the coordinates ( , )   are linear transformations of 

( , )l l  , as for a triangle element [5], 

   1 1 1 1 111
, (1 ), (1 ) ; for  a b b J a              , (1) 

   2 2 2 2 222
, ( ) , (1 ) ; for  a a b J b             , (2) 

   3 3 3 3 3 333
, (1 ) , ( ) ; = (1 ) for  a a b b J a b                 , (3) 

as well as for a quadrilateral element (subtriangles referred to as l ), 

   1 1 1 1 111
, ( ) , (1 ) ; = for  a a b J a            , (4) 

   2 2 2 2 222
, (1 ) , ( ) ; = (1 ) for  a a b b J a              , (5) 

   3 3 3 3 333
, (1 ) , (1 ) ; = (1 ) for  a a b b J b               , (6) 

   4 4 4 4 444
, (1 ), (1 ) ; = for  a b b J a             . (7) 

     The ratio ( , )l ll
J r    is always finite, which justifies the classically proposed 

coordinate transformation, but with the added advantage of enabling the analytical 

F P
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evaluation of the problem’s key integrals [5]. As implemented, transformations end up 
carried out directly from Cartesian to subtriangle coordinates. 
     These developments are – to the authors’ best knowledge – a novel generalization of a 
transformation classically proposed in the literature on finite and boundary element 
methods that uses a square-to-triangle degeneration in order to deal with a singularity [6]. 
The singularity of concern for the transformation is located at a point P( , )a b   , as in 

Fig. 1. For an analytical function  ,f    and the T3 triangle, integration is carried out 

over transformed spaces corresponding to the indicated subtriangles, P12 , P23  and P31 , 

    
31 1 1 1

0 0 0 0
1

, d d ( , ), ( , ) ( , ) d dl l l l l l l l l
l

f f J


             




    , (8) 

considered as degenerated square subspaces  [0,1], [0,1] , 1,2,3l l l    , where one of 

the nodal points of the unit square collapses in order to coincide with the point of 
singularity P. The auxiliary coordinate systems ( , )l l   have origin at node P  and are 

oriented as indicated in Fig. 1. Depending on the depicted values of a  and b  one or two of 
these triangles may be void or correspond to negative areas, so that both cases of singularity 
and quasi-singularity are dealt with in the same algorithm. In the presently proposed 
general approach, the singularity may be located even outside the ( , )   plane, as shown in 

Fig. 1(c) for a quadrilateral element represented in the Cartesian space and a singularity 
(source) point 0. The distance from the source 0 to a field point F on the element is the 

hypotenuse 0F  of the right triangle whose legs are the distances 0P  from the source point 

to the plane and PF . 

2.1  Development for the case of a real quasi-singularity 

Although eqn (8) can be used in a straightforward way for improper integrals, the integral 
cannot be directly obtained for 0 P  when embedding a real singularity or 
hypersingularity. When 0 P  is outside the triangle segment, as for results at internal 

points that are close to the boundary and on the  ,   plane, one should better exclude the 

integration areas that are outside the actual integration interval, with eqn (8) evaluated 
according to one of the following particular cases (function arguments omitted): 
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     Up to three cases are given in the first and third rows of expressions on the right-hand 
side: 0a   or 0a   or 0a   for 0b   as well as ( 0, 0)a b   or , 0a b   or 

( 0, 0)a b   for 0a  . One or two cases are comprised in the second row: 0b   or 0b   

for 0a  . Depending on 
l

J , as given in eqns (1)–(7), some integrals may be void or 

negative. The integration limit 0l   is never reached. 

     Eqns (8) – for improper integrals and weak quasi-singularities – and (9) are compact sets 
of expressions directly needed in code implementations for potential and elasticity 

problems, provided that the integrals with integrands  lf   can be obtained analytically, 

which has been shown to be the case [5]. 

3  GENERAL FORMULATION OF THE 3D PROBLEM 
For a linear triangle or a flat quadrilateral element, the evaluation of the coordinates 

P P( , ) ( , )a b    of Fig. 1 is a simple geometry matter. After a tedious development that 

uses the triangle to subtriangle transformations given in eqns (1)–(7), the distance square 
2 2 22 0F 0P PFr     of Fig. 1 (see [5] for triangles and more generally) becomes 

expressed for each subtriangle as 

  2 2 2 2 2 2 2 2
0 0 0l l l l l l l l lr r c r a b c r               , (10) 

where 
22

0 0Pr  . One checks that, for a triangle whose area is not void, 0la  . Moreover, 

particular cases are 2 2
l l lc a  , when the singularity is located at node 2,3 or 1  for 

1,2 or 3l  , respectively, as for the triangle element. Also, 0lc  . Moreover, for a 

subtriangle 1,2,3l   and using a cyclic notation for ( ) : 3,1,2,3,1L l  , one obtains according 

to Fig. 1(a): 

 

 

2

22
0

2 2
0

0( ( ) 1) 0

P( ( ) 1) 0

4 0.

    

      

  

 
 

 

l l l

l l l

l l l

a b c L l

a b c r L l

a c r b

 for the triangle element

 (11) 

     In the case of a singularity or real quasi-singularity, 
22

0 0P 0r    and the distance 

tends to zero with 0l   independently from the respective coordinates l . All 

particularities of subtriangles with void or negative areas (void or negative integrals) are 
taken care of by the Jacobian transformations given in eqns (1)–(7) as well as by 
developments according to eqns (8) and (9). 
     Eqn (10) – for flat triangle and quadrilateral elements (with straight edges, of course) – 
is part of a general outline for high order, distorted elements, with radial distances given as 
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(12) 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 126, © 2019 WIT Press

4  Boundary Elements and other Mesh Reduction Methods XLII



where ijc  are coefficients to be evaluated and adequately interpreted for their geometric 

representation, as done in eqn (11). It is still open whether such general problems may be 
dealt with in the present, analytical framework. 

4  EVALUATIONS FOR POTENTIAL PROBLEMS 
Owing to space restrictions, the explicit expressions for the single- and double-layer 
potential matrices G  and H  for 3D potential and elasticity are not given [1], [5]. The 
developments for arriving at such expressions are actually relevant to show the kind of 
integrals we must deal with as well as how important it is to take the properties outlined in 
Section 3 into account [5]. The results are briefly summarized in the following. All 
integrals could be evaluated analytically using the mathematical software Maple [7] and 
some ingenuity. 

4.1  Single-layer potential matrix G  

For the single-layer potential matrix G  [1], [5], the integrals 

 

1 1

2
02 2 2

000

1
d d , 1,2,3 for 0

l l l

l l l

l l

l r
r c

 
  


  

 

 
  

, (13) 

are required, where the array 1 l l l   contains the three terms of a bivariate 

polynomial that are relevant to the present developments. The integrals for 2
0 0r   (when 

l  cancels out in numerator and denominator) and for 2
0 0r   are actually dealt with 

separately in the computational implementation. 

4.2  Double-layer potential matrix H  

For matrix H  and 2
0 0 r , the analytical expressions of the three terms 

 
 

1 1

2
03

2 2 2 2
000

1
d d , 1,2,3; 0

 
  


  

 

 
 

 

l l l

l l l

l l

l r
r c

, (14) 

are required. For 2
0 0 r  (potential problems), these integrals are void. For a diagonal term 

of H , the finite part of the integrals are also void (for potential problems, but not for 
elasticity), but discontinuous terms to locally go around the singularity must be evaluated. 
This in principle involves a complicated geometry description of all elements that share a 
source point but could actually be dealt with in the frame of a simple algorithm [5]. 

4.3  Results at internal points 

The evaluation of potential results at internal points requires the same types of integrals 
above. For the quasi-singularity case of 2

0 0 r , the evaluation of gradient results deals 

with the analytical expressions of 12 integrals, schematically represented for 3p  and 

5p : 
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 
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 
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l l l

l l
l l l lp

l ll l
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. (15) 

For a real quasi-singularity, that is, 2
0 0 r  for the source point outside the boundary 

segment but on its plane, one evaluates the five integrals 

 
2

2
03

1 d
d , 1,2,3 for 0

1

   
  

 
    





l l l
l

ll l l

l r
c

, (16) 

in the interval [0,1] , in principle, but making the adjustments indicated in eqn (9) for l  in 

the denominator. For elasticity problems and triangle and quadrilateral flat elements, there 
are a few more polynomial terms in the numerators of eqns (13)–(16) and the denominators 
are affected by powers one order higher. However, all integrals may be evaluated 
analytically, as well [5]. 

5  A QUEST FOR SIMPLIFICATION OF THE TRIANGLE ELEMENT T3 
Fig. 2(a) shows the element T3 for potential or displacement nodal values referred to the 
vertices, with degrees of freedom common to all elements that share a vertex (topological 
issues concerning fracture mechanics, for instance, not considered). Linear potential or 
displacement fields along the element are obtained by interpolation – exactly as in the 
isoparametric formulation of the displacement finite element method. On the other hand, 
the representation of normal gradients or traction forces, as for the evaluation of the single-
layer potential matrix G , requires a framework that has no parallel in the (traditional) finite 
element formulation. Normal gradients and traction forces are surface attributes and cannot 
be attached to nodes. If we geometrically refer such attributes to an element’s boundary 
point, this must be interpreted as a limiting case, as illustrated in Fig. 2(a). In such a case, 
normal gradients or traction forces are also linearly interpolated along the element in terms 
of the given surface attributes. A numerical model implemented with such an element must 
exactly (within machine precision) represent constant and linear potential or displacement 
fields. Since for a flat surface the corresponding normal gradients (and traction forces) have 
respectively zero and constant values, one might ask whether the use of a single parameter 
for such quantities – geometrically referred to the element’s middle point, as in Fig. 2(b) – 
would lead to reasonable numerical results. This will be illustratively assessed in the 
numerical simulation of Section 6. We also must keep in mind the total number of degrees 
of freedom involved in such numerical simulations. 
     Euler’s theorem for a simply connected polyhedron is      2  V F E , where V is the 
number of vertices, F the number of faces and E the number of edges. It may also be shown 
that, in the special case of the simply connected polyhedron made up of triangular faces, 
3   2F E . Then, we obtain for the T3 element and a simply connected domain that 

  2 4 F V . If there are cavities in the domain, we must apply this formula to each 
separate cavity. On the other hand, if the domain is generally not convex, such as in a 
toroid, the relations above do not apply. Nevertheless, one may affirm that, when refining a 
3D boundary with T3 triangle elements, the number of faces F, that is, elements, tends to be 
equal to twice the number of vertices V, that is, nodes:  2F V  as V . A similar 
reasoning leads to the conclusion that, for a boundary discretization with Q4 quadrilateral  
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(a) (b)

Figure 2:    Element T3 with three nodal points for potentials (at the vertices) and surface 
attributes for normal gradients. (a) Three geometrically attached to points that 
tend to the vertices; and (b) One for a surface point referred to the triangle 
barycenter. 

elements,   F V  as V . Then, in a numerical simulation of a potential 3D problem 
using T3 elements with three nodal parameters for potentials and three attributes for the 
normal gradients, the double-layer potential matrix H  is always square and of order V, 
whereas the single-layer potential matrix G  has V rows and 3F  ( 6 V ) columns, in 
general – both matrices of rank 1V  for a finite domain, if the problem is consistently 
formulated [2], [3]. This is the case of boundary condition discontinuities of the discretized 
surfaces that have a vertex in common. Observe that this assertion is more general and 
conceptually more appropriate than just saying that we are dealing with locally non-smooth 
surfaces. If one is sure that there are no boundary discontinuities of the normal gradients on 
the surface around a vertex, one may consider – for computational economy – one normal 
gradient degree of freedom at the considered vertex. In the case of only one normal gradient 
attribute geometrically referred to the middle of the T3 element, the number of columns of 
G  is just F and its rank is the same as before. (The dilemma continuous versus 
discontinuous elements is just a matter of misconception [2]). 

6  A SIMPLE NUMERICAL ILLUSTRATION 
Fig. 3 represents a very irregular 3D domain with a cavity (drawing rotated with angles 

105 , 80     ), whose boundary is discretized with 16 linear triangle elements and 12 

nodes. This is a development of the numerical example presented in [5]. The Cartesian 
coordinates of these nodes are 
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using the first row for the node numbering, in an array that also contains the coordinates of 
internal points 1, 2  and external points 3, 4, 5, 6  at which potential and gradient results are 
to be evaluated. The nodal incidence is 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3 5 5 3 1 8 4 4 8 7 7 9 10 9 9

2 2 3 6 6 3 2 2 8 6 6 8 10 12 11 12

3 4 4 3 7 7 1 8 5 5 8 1 11 11 12 10

 
 
 
 
 
 

Inc . (18) 

 

Figure 3:    Very irregular domain with internal points 1, 2  and external points 3, 4, 5, 6  
at which potential and gradient results are to be evaluated. 

     It is worth observing that elements 6 (nodes [1 3 7]) and 12 (nodes [7 8 1]) are almost 
coplanar. Nodes 9–12 correspond to a cavity built up with elements 13–16. The external 
point 6  is precisely in the middle of the cavity. All nodes and internal and external points 
are very close to the boundary segments. For such a small example (no far nodes, for which 
a numerical quadrature would be preferable in order to save computational costs), the 
diagonal terms of H  are analytically evaluated by just imposing orthogonality to a constant 
potential field. Consistency check of the boundary element equation Gt Hd  for 3 
linearly varying potential fields holds for 19 digits in an implementation using Maple 

software [7] with 20 digits of precision. The internal point 1  and the external points 3, 6  
present complex quasi-singularities with respect to all 16 elements, with gradient results 
evaluated according to eqn (15). The internal point 2  is on the plane of element 6 and 
corresponding gradients must be evaluated for all three subtriangles as given in the second 
row on the right-hand side of eqn (9), for 0.1, 0.55  a b , with negative area for 

subtriangle 1. The external points 4  and 5  are in the intersection of the planes given by 

elements 1 and 2. Gradient results at point 4  require evaluations for element 1 
( 0, 0.05)  a b  over subtriangles 2 (negative area) and 3, and for element 2 
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( 1.05, 0.05)  a b  over subtriangles 1 and 2 (the latter with negative area), both cases 

according to the first row of eqn (9). Gradient results at point 5  require evaluations for 
element 1 ( 0, 1.05) a b  over subtriangles 2 and 3 (negative area) according to the third 

row of eqn (9), and for element 2 ( 0.05, 1.05)  a b  over subtriangles 1 (negative area) 

and 2 according to the second row of eqn (9). Then, all possible cases of quasi-singularity 
and topology issues are numerically assessed. Accuracy for potential results at all six points 
is checked for about 18 digits. For gradient results round-off errors unavoidably occur and 
accuracy is checked for at least 16 digits in the case of points 1, 2, 6  and at least 13, 12 and 

10 digits in the case of points 3 , 4  and 5 , respectively. (Results at external points 

3, 4, 5, 6  obviously compare with zero.) 
     The domain of Fig. 3 is submitted to a total of 36 independent potential fields (solutions 
of the Laplace equation) corresponding to 1 constant, 3 linear, 5 quadratic, 7 cubic, 9 
quartic and 11 quintic polynomials. The respective results measured on the boundary as 
nodal potentials and normal gradient attributes are applied to first check the consistency of 
the BEM equation Gt Hd . This equation turns out to hold exactly (within machine 
precision) for the simplest four solutions. Fig. 4(a) shows the Euclidean norms of relative 
errors | |Gt Hd  of this equation for the remaining 32 test solutions, vertical dash lines 

separating the polynomial orders. Four different kinds of results are grouped. The errors are 
in general very large, as the applied fields correspond to high degree polynomials and there 
are too many boundary irregularities for such a coarse mesh. The solid (black) and long 
dash (red) lines correspond respectively to the elements in Fig. 2(a) (3 parameters) and 2(b) 
(1 parameter) for the single-layer potential matrix Gadm  evaluated in the admissible way 

preconized by Dumont [2]. The dash–dot (black) and dash (red) lines correspond to the 
same results above, but with G  evaluated as traditionally (and conceptually wrongly). For 
the 5 quadratic potential fields the measured normal gradients are in balance and there is no 
difference between admissible and inadmissible evaluations. As communicated in [3], there 
is no means of telling whether admissible evaluations should lead to more accurate 
solutions – this is observed in the graphic, in general, but exceptions are also shown. In this 
example, the matrix H  is of order 12 and rank 11. The most relevant conclusions concern 
the matrix G , which has 12 rows, but 48 columns for the element with 3 parameters, and 
only 16 rows for the element with just 1 parameter for normal gradients – for no 
numerically sensible accuracy loss, according to the graphics. Since there are no 
approximations in the integral evaluations, the differences in results are solely attributable 
to the different simulation schemes. The comparatively good results for the discretization 
with one element middle node for normal gradients is not a surprise, as the middle point is 
the optimal location for a quadrature scheme. 
     Out of the many numerical assessment possibilities for evaluations at internal (and 
external) points, Fig 4(b) and 4(c) refer to the internal point 1  of Fig. 3, with the same type 
of simulations described in Fig. 4(a) – together with the analytical values for the sake of 
comparison. The conclusions arrived at for the first graphic are here corroborated. 

7  CONCLUDING REMARKS 
The developments of this paper apply to steady-state potential and elastostatics problems 
implemented for T3 and flat Q4 elements. Owing to space restrictions only the T3 
implementation for potential problems is outlined and numerically assessed with some  
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(c)

Figure 4:    Some numerical results for the example of Fig. 3. (a) Consistency check of the 
equations; (b) Potential; and (c) Euclidean norm of gradient results at point 1 . 
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detail. All integrations are carried out analytically. The arrays with such analytical results 
will be published opportunely, but may be made available on request. Since there are no 
unsolved numerical integration issues, no matter how close a source point is to an element 
surface and how particularly located, it is for the first time possible to numerically assess 
that the use of just one middle node parameter for the boundary representation of normal 
gradients with the T3 element is of definitive computational advantage. It is also for the 
first time numerically illustrated that the concept of an admissible single-layer potential 
matrix, as preconized by the first author already in 1998, leads to better and more consistent 
results also for 3D problems than as outlined in the classical literature on boundary element 
methods. 
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