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Abstract

In this paper a new technique considering the dual reciprocity method (DRM) with
only internal collocation points is considered along with local radial basis function
interpolation. This approach gives rise to regular integral equations. Numerical
results for the convection-diffusion equation are presented for different Peclet
numbers. Comparisons with other numerical techniques are shown in order to
illustrate the good solutions obtained by this method.
Keywords: DRM, RBF, regular integral equations.

1 Introduction

The basis of boundary element method (BEM) is to transform the original partial
differential equation (PDE), into an equivalent integral equation. Several methods
have been developed to take domain integrals to the boundary in order to eliminate
the need for internal cells (boundary only BEM formulations). One of the most
popular to date is the dual reciprocity method (DRM) introduced by Nardini and
Brebbia [1], it converts the domain integrals into equivalent boundary integrals.

Popov and Power [2] found that the DRM approach can be substantially
improved by using domain decomposition to improve the accuracy of the DRM
approach, this idea was inspired by the work of Kansa and Carlson [3] on the
radial basis function (RBF) data approximations. Florez et          al.                                                  [4] improved
the performance of the DRM in the BEM numerical solution of the Navier-
Stokes equations through a multidomain decomposition technique. Following
those results, the performance the DRM-MD was investigated [5], implementing
quadratic shape functions of the boundary elements for both the approximation of
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the geometry and the surface variables of the governing equations. In recent years,
the theory of radial basis functions (RBFs) has undergone intensive research and
enjoyed considerable success as a technique for interpolating multivariable data
and functions. The idea of introducing RBF interpolation to improve the accuracy
of a classical numerical scheme has been employed by Wright and Fornberg [6].

In [7] a modified Control Volume (CV) method which uses a RBF interpolation
to improve the prediction of the flux accuracy at the faces of the CV is presented.
This method is also more flexible than the classical CV formulations because the
boundary conditions are explicitly imposed in the interpolation formula, without
the need for artificial schemes (e.g. utilising dummy cells).

Popov and [8] introduced the radial basis integral equation method
(RBIEM). It naturally extends from the work of Popov and  Bui  [9] by adopting
circular subdomains and by using interpolation to obtain the distributions over
the local boundaries. The RBIEM evaluates the derivatives by employing two in
2D problems additional equations obtained by differentiating the local integral
equation. In this work a new DRM technique is introduced where only regular
integral equations are considered and local RBF interpolation is implemented.

2 Mathematical formulation

Let us consider a boundary problem on the domain Ω. The governing partial
differential equation for this problem can be written as:

∇2u (x) = b

(
x, u (x) ,

∂u

∂xi
(x)
)

(1)

where u (x) is the potential field, x the position vector, xi the i component of
x. The problem definition is completed by specifying the following boundary
conditions (BC) on Γ (∂Ω):

u (x) = u0 (x) on Γ1 (2)

∂u

∂n
(x) = q0 (x) on Γ2 (3)

where Γ1 ∪ Γ2 = Γ, and Γ1 and Γ2 are non-intersecting parts of the boundary, the
functions u0 and q0 are suitably prescribed functions of x.

Integral equations for linear problems can be formulated through the application
of Green’s identities, which represent a harmonic function as the superposition of
a single-layer, a double-layer potential and a volume potential.

If b = 0 the governing equation (1) is the Laplace equation. By using the
Green’s identities, the integral representation over the Laplace equation its integral
representation can be written as:

c (ξ)u (ξ) =
∫
Γ

q∗ (x, ξ)u (x) dΓx −
∫
Γ

u∗ (x, ξ) q (x) dΓx (4)

where ξ is a source point, and u∗ (x, ξ) is the fundamental solution of the Laplace
problem, ∇2u∗ (x) = δ (x, ξ) where δ (x, ξ) is the Delta function. The Green’s
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function (called here the fundamental solution) u* satisfying this equation, is given
by:

u∗ (x, ξ) =
1
2π

ln
(

1
R

)
(5)

for 2D problem, where R is the distance from the source point, R = |x− ξ|
and q∗ (x) = ∂u∗

∂n (x, ξ). The constant value c (ξ) ∈ [0, 1], being 1 if the point
x is inside the domain and 1

2 if the point x is on a smooth part of the domain
boundary Γ.

For generals b
(
x, u, ∂u

∂n

)
in order to obtain the similar integral eq. (4) the

fundamental solution is available only for a few simple forms of b, for more
complicated function u∗ is not available.

In this work the following equation is considered:

D
∂2u (x)
∂xjxi

+ Vi
∂u (x)
∂xi

+ ku (x) = 0 (6)

with no fundamental solution available for arbitrary values of the convective
velocity and reaction terms, the following integral formulation is used:

c (ξ)u (ξ) =
∫
Γ

q∗ (x, ξ) u (x) dΓx −
∫
Γ

u∗ (x, ξ) q (x) dΓx −
∫
Ω

bu∗ (x, ξ) dΩx

(7)
with b = −Vi

∂u
∂xi

(x) − ku (x). Equation (7) consists of both surface and domain
integrals.

Several methods have been developed to take domain integrals to the boundary,
in this work the Dual Reciprocity Method (DRM) is considered [1], which
most remarkable feature is the fact that it does not depend on obtaining a new
particular solutions for each case under consideration. The DRM employs an RBF
approximation of the non-homogeneous term b, such that:

b ≈
N∑

k=1

βkϕ (x,xk) (8)

substituting (8) into the domain integral in eq. (7) yields:

∫
Ω

b (x)u∗ (x, ξ) dΩx ≈
N∑

k=1

βkϕ (x,xk)u∗ (x, ξ) dΩx (9)

if a particular solution ϕ̃ (x,xk) exists such that: ∇2ϕ̃ (x,xk) = ϕ (x,xk). by
replacing into (9) and applying Green’s second identity in eq. (7) it is finally
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obtained:

c (ξ)u (ξ) =
∫
Γ

q∗ (x, ξ) u (x) dΓx −
∫
Γ

u∗ (x, ξ) q (x) dΓx

−
N∑

k=1

βk

{
c (ξ) ϕ̃ (ξ,xk) −

∫
Γ

q∗ (x, ξ) ϕ̃ (x,xk) dΓx

+
∫
Γ

u∗ (x, ξ)
∂̃ϕ

∂n
(x,xk) dΓx

}
(10)

A radial basis function (RBF), ϕj (x) = ϕ (x− xk) = ϕ (‖x − xk‖) depends
upon the separation distances of a subset of data centres. In a typical interpolation

problem N pairs of data points
{
(xj , F (xj))

N
j=1

}
, which are assumed to be datas

of one unknown function F that is to be interpolated by the function f , i.e.

f (x) =
N∑

j=1

αjϕ (‖x − xj‖) + Pm−1 (x) (11)

along with the constraint conditions

N∑
j=1

αjpk (xj) = 0 1 ≤ k ≤ m − 1 (12)

where αj , j = 1, . . . , N are real coefficients and ϕ is a radial basis function. The
matrix formulation of the above interpolation problem can be written as Ax = b
with

A =

(
Ψ Pm−1

P t
m−1 0

)
(13)

2.1 Regular local dual reciprocity method scheme

In the proposed formulation a decomposition of Ω in subdomains is considered
(Fig. 1). In this work only rectangular sub-domains with variable number of
internal points will be considered. Even though other possibilities are possible,
such as overlapping sub-domains and any geometrical shape per sub-domain.
Which gives the possibility of extending this method to more complex and general
conditions.

In the proposed scheme the integral eq. (7) is applied to one or more than one
source points inside the sub-domains. As no source points are considered on the
boundaries of the local sub-domains the obtained integral equation will always be
regular.
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Figure 1: uniform discretization of the domain: 80 sub-domains, 5 internal points
per sub-domain.

Figure 2: Stencils and set of points configuration. Crosses: collocation and interpo-
lation points. Circles: interpolation points. Triangles: interpolation points
where BCs are considered.

The unknown field u is approximated by RBF interpolation (φj (x) :=
φ (‖x − xj‖))

u (x) =
N∑

j=1

αjφj (x) (14)
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where N = Jin +Jbn, with Jbn nodes at the neighbouring sub-domains of a given
integration sub-region forming the interpolation stencil (where the interpolation
stencil at each sub-domain is constructed by the integration sub-region and
its neighbouring sub-domains as shown in Fig. 2). and Jin nodes inside the
integration sub-domain considered in the stencil. For these local interpolations
various integration types of stencil configurations are defined (see Fig.     2).

The approach presented in this work can be considered as Regular since the
integral equations are only applied to internal points, and Local since the unknown
field u is interpolated locally. To convert the domain integral in Eq. (7) into
a boundary integral the Dual Reciprocity Method is considered. Therefore, the
approach presented in this work will be referred as Regular Local Dual Reciprocity
Method (RL-DRM). Besides, the proposed approach is a type of meshless scheme
since no matching conditions is directly imposed at the sub-domain interfaces,
which requires a connectivity algorithm for its implementation. In the present case,
as well as in the Popov and Bui RBIEM approach [8], these matching conditions
are imposed at the local interpolation by considering the corresponding extension
of the interpolation functions across the integration sub-domains defining the
interpolation stencil.

Consequently, no matching conditions over common sub-domain interfaces are
necessary in this approach, substantial simplifying the numerical implementation
of this type of approach. It is important to mention that in the proposed
approach the boundary conditions of the problem are directly imposed in the local
interpolation stencils instead of at the integration surface as in classical BEM,
additionally simplifying the numerical implementation of the proposed approach.

Depending on the relative position of the stencil with respect to the domain
different situations occur. When a stencil is internal, as in stencil 1 in Fig.  2, no
interpolation points are considered on the stencil boundaries (crosses and empty
circles in stencil 1, Fig. 2). On the other side, when a stencil is on the boundary
of the whole domain points on the boundary of the stencil are considered for
the interpolation (filled triangular symbols on the domain boundaries plus empty
circles and crosses, in stencils 2, 3 and 4 in Fig. 2). Regarding the boundary
conditions (BC) of the problem different types of interpolation are applied. When
the boundary points of the stencil belong to the Dirichlet type BC a simple
interpolation is considered. When any of the boundary points of the stencil is of
a Neumann type of BC a symmetric interpolation (Hermit) is used at such nodal
point, considering the normal derivative of the RBF in that boundary point.

If u = (u1, u2, . . . , uN) it is possible to express α from A and u, α = [A−1][u],
so:

u (x) = [φj (x)][A−1][u] (15)

For the DRM interpolation it is considered:

b (x) =
N∑

j=1

βjϕj (x) (16)
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in this work {xj ∈ X, j = 1, 2, . . . , Jbn + Jin}, similarly to equation (21) beta is
written as: β = [Ã−1][b], where vector [b] written as:

[b] =
(

[−Vi
∂ϕj

∂xi
] + [−kϕj ]

)
[A−1][u] (17)

then reaching

β = [Ã−1]
(

[−Vi
∂ϕj

∂xi
] + [−kϕj]

)
[A−1][u] (18)

Using (14) and (16) in the integral formulation (7) with ξ = xi center of Ωi the
discretized for the unknown ui = u (xi) is given as

ui =
N∑

j=1

αjHij −
N∑

j=1

αjGij −
N∑

j=1

βj

{
ϕ̃j (xi) − H̃ij + G̃ij

}
(19)

In matrix notation:
u = H [α] − G[α] − F [β] (20)

where Hji =
∫
Γi

q∗ (x,xi)φj (x) dΓx, Gji =
∫
Γi

u∗ (x,xi)
∂φj

∂n (x) dΓx and

Fji = ϕ̃j (xi) −
∫
Γi

q∗ (x,xi) ϕ̃j (x) − u∗ (x,xi)
∂ϕ̃j

∂n (x) dΓx. Using (15) and
(18) is obtained:

u =
(

H [A−1] − G[A−1] − F [Ã−1]
(

[−Vi
∂ϕj

∂xi
] + [−kϕj]

)
[A−1]

)
[u] (21)

All the integrals in the above formulations are regulars, since the collocation points
are located inside the integration sub-domains, and they are evaluated through the
Gauss-Legendre quadrature.

3 Numerical results

In this section we present the numerical results for a boundary value problem
solved with the RL-DRM method. The governing equation for the case we are
presenting in this paper is a one-dimensional convection-diffusion problem with
reaction term and a variable velocity field parallel to the x1-axis

D
∂2u (x)

∂x2i
+ V1

∂u (x)
∂x1

+ ku (x) = 0 (22)

satisfying the following boundary conditions

(BCs)

{
u (0, x2) = U0 u (1, x2) = U1
∂u
∂x2

|x2 = −0.1 ∂u
∂x2

|x2 = −0.1
(23)
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The convective velocity field is

Vx1 = ln
U1
U0

+ k

(
x1 − 1

2

)
; Vx2 = 0 (24)

corresponding to the flow of a hypothetical compressible fluid with a density
variation inversely proportional to the velocity field. The analytical solution of
the above boundary valued problem for D = 1m2/s is given by

u (x) = U0 exp
{

k

2
x21 +

(
ln

U1
U0

− k

2

)
x1

}
(25)

For the numerical analysis this one-dimensional problem will be considered as
two-dimensional in a rectangular domain Q = [0, 1] × [−0.1, 0.1]

To evaluate the performance of the RL-DRM we present numerical results for
different values of the decay parameter k = 40, 100 and 200. For k = 40 the
RL-DRM solutions are analyzed by comparing the numerical results with the
analytical solution (25) and with numerical results obtained by Popov and Bui [8]
applying the RBIEM method. Figure 3, for the case of k = 40, shows very good
agreement with the analytical solution for the potential field and its derivative,
respectively. It can be observed that numerical results for RL-DRM reaches good
solutions on the boundaries of the domain, where numerical results are reported to
be inaccurate with RBIEM [8].

Table 1 shows the L2-norm error for U and dU obtained with RL-DRM for
different discretizations of the domain, results obtained with RBIEM [8] are also
included in table for comparison. Since RL-DRM yields 1 integral equation per
node and RBIEM gives 3 equations per node, the number of equations (NE) is
included in Table 1 to clarify the comparison between the two methods.

Results for RL-DRM with 80 NE (80x1) with 80 sub-domains and only
one evaluation point per sub-domain are shown in Table 1 to emphasize the
improvement of the approximated solution while increasing the internal points
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Figure 3: Left) U profiles. Right) dU profiles. Full line: analytical solution. Circles:
RL-DRM.Crosses: RBIEM. k = 40.
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Table 1: RL-DRM: L2-norm error of U and dU. RBIEM: L2-norm error of U. NN:
number of nodes, NE: number of equations, nsd: number of sub-domains,
nip: number of internal points per sub-domain. k = 40.

Method NN (nsdxnip) NE L2 error U(%) L2 error dU(%)

RL-DRM 80(80×1) 80 17.63 29.92

360(40×5+160×1) 360 1.48 15.40

400(80×5) 400 0.85 1.25

440(60×5+140×1) 440 0.57 2.44

RBIEM 95 285 5.35 not reported

185 555 4.73 not reported

689 2067 1.48 not reported

1513 4539 0.75 not reported

2657 7971 0.48 not reported

per sub-domain, as is the case for 400 NE (80x5 Fig. 1), corresponding to 80
sub-domains but 5 evaluation points per sub-domain, reducing the error for U
from 17.63% to 1.48% , respectively. Solutions for 360 and 440 NE correspond
to p-adaptive strategies, considering nodal enrichment where the absolute errors of
previous uniform discretizations are higher. It must be mentioned that the small
lost of accuracy of the L2-norm error for 440 NE for the dU (2.44%) is due
to the proximity of the nodes which implies ill-conditioning of the local system
of equations. This problem could be overcome either increasing the numerical
precision or improving the linear solver.

It is fair to mention that similar improvement on the solution can be achieved
with the RBIEM scheme by using more than one integration point for sub-domain
instead of only one as original proposed in [9].

Comparing the two methods in Table 1, it can be observed that RL-DRM reaches
a 0.57 L2-error for 440 NE, while RBIEM attains a 0.48 L2-error for 7971 NE.

Figure 4 shows the computed RL-DRM solutions for the potential field U, with
k = 100 and k = 200, which are in very good agreement with the analytical
solution.

4 Conclusions

A method based on the DRM approach considering only regular integrals and
local RBF interpolation has been presented for the solution of the convection-
diffusion equation. Numerical solutions for different Peclet numbers are shown to
be in very good agreement with analytical solutions. Even when in this work the
discretization of the domain is based on rectangular sub-domains, the RL-DRM
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Figure 4: U profiles. Full lines: analytical solution. Circles: RL-DRM. Left) k =
100. Right) k = 200.

is not a sub-domain technique as no matching conditions are necessary. The RL-
DRM can easily add internal points per sub-domain in an adaptive fashion, highly
increasing the accuracy of the method. This new technique can be considered as
meshless since there is no restriction on the choice of the nodes where the integral
equations are applied and no a direct implementation of the sub-domain matching
conditions are required.
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