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Abstract 

The collocation boundary element method is derived on the basis of the 
weighted-residuals statement. Only the static case is addressed, as it already 
involves all relevant conceptual issues. The present outline brings to discussion 
some relevant aspects and implementation issues of the method that should 
belong in any text book. It is shown that, if the boundary element method is 
consistently formulated, an inherent error term – related to arbitrary rigid-body 
displacements – is naturally taken into account and has no influence on the 
resultant matrix equation, with traction force parameters that are always in 
balance independently of mesh discretization. The constitutive matrices of the 
method – the single-layer and double-layer potential matrices G and H – present 
some spectral properties that are per se interesting but that also have applicability 
consequences. The matrix G is rectangular, if consistently obtained. For and 
adequately formulated problem, the solution of the resultant matrix equation is 
always possible (and unique) whether directly or approximated in terms of 
equivalent nodal forces. The effects of body forces, whenever transformable to 
boundary actions, may be expressed in terms of the boundary interpolation 
functions, which renders the final matrix equation more elegant and speeds up 
calculations in no detriment to accuracy. There is a novel proposition for the 
interpolation of traction forces along curved boundaries, with results that may be 
only slightly improved, as compared to the classical procedure, but that 
simplifies numerical computation and adds to the consistency of the method in 
terms of patch test assessments. The conceptual and numerical developments are 
illustrated by means of a few examples. 
Keywords: boundary elements, weighted-residual methods, generalized inverses. 
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1 Introduction 

The conventional, collocation boundary element method (CBEM), whenever 
applicable, is a simple, powerful numerical analysis tool [1]. There is an 
uncountable number of alternatives of formulations and implementations, some 
of them based on sound principles [7, 8], many of them contributing to the 
richness of the method [1], but unfortunately some of them just misleading. The 
present contribution is not a review paper and, on the contrary, makes just a few 
references to the technical literature. In this outline, which starts with a 
consistent derivation of the CBEM, one pays tribute to the method by addressing 
some theoretical issues that are in general overlooked. One expects to add to the 
conceptual consolidation of the method by analyzing some relevant spectral 
properties, and also daring to suggest a few improvements.  

2 A simple, consistent derivation of the BEM 

2.1 Problem formulation 

An elastic body is submitted to body forces bi in the domain  and traction 
forces it  on part   of the boundary. Displacements iu  are known on the 

complementary part u  of  . One is looking for an adequate approximation of 

the stress field that satisfies equilibrium in the domain,  

 0,  ijji b   in  , (1) 

also satisfying the boundary equilibrium and compatibility equations, 

 ijji t   along   ,  ii uu    on  u, (2) 

where 
j  is the outward unit normal to  . Indices i, j, (also k, l) may assume 

values 1, 2 or 3, as they refer to the coordinate directions x, y or z, respectively, 
for a general 3D analysis. Sum is indicated by repeated indices. Particularization 
to 2D analysis as well as to potential problems is straightforward.  

2.2 From a variational to a consistent weighted-residuals statement 

Assuming that ij  is a symmetric tensor that satisfies a priori the constitutive 

equation lkijklij uC , , the present problem might be formulated in the frame of 

the strong form of the principle of stationary (minimum) total potential energy 
[6], for a variation iu  of iu , already extending the boundary integral from   

to , since, according to eqn (2), 0iu  on u: 

     0dd,    iijjiiijji utub  . (3) 
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     However, one rather formulates the problem in a non-variational, less 
restrictive framework than eqn (3), in terms of weighted residuals, resorting to a 
field of fundamental solutions, that is, stresses and displacements of the same 
elasticity problem,   lkijklij uC , , that satisfy the homogeneous part of eqn (1), 

but not the boundary conditions of eqn (2): 

     0dd,   






iijjiiijji utub  . (4) 

     Integrating by parts twice the first term on the left of the above equation, with 
successive application of the Green’s theorem, one obtains 

  













  dddd , iiiiijjiijji ubutuu  . (5) 

     To arrive at the above expression, one has also resorted to the 
identity   kllkjiijkllkjiji uuCuu  ,,,, , which is not Betti’s reciprocity theorem. 

     The conventional, collocation boundary element method may be derived from 
eqn (5), for fundamental solutions 

ij  and 
iu  given as 

   mijmij p , (6) 

   msm

r

isimi pCuuu  )( , (7) 

where r

isu , for rns 1 , are rn  rigid-body displacements that are multiplied by 

in principle arbitrary constants smC , and 
mp  are arbitrary (virtual) force 

parameters, with m characterizing both location and direction of application of 

mp . Then, 

ijm  and 
imu  are functions – with global support – of the 

coordinates and directions of 
mp  referred to by m (the source point), as well as 

of the coordinates and directions referred to by i (the field point), where the 
effects of 

mp  are measured. 

     The strength of the boundary element method stems from the fact that 
mp  

are point forces applied along  , just outside , however infinitely close. 
Although 

ijm  and 
imu  tend to infinity at the point of application of 

mp , they 

are analytical in . For convenience, the functions 
ijm  are normalized such 

that, for a domain 0  that contains 
mp , with enclosing boundary 0 ,  

 imjjimjjim    







00
, dd , (8) 

where im  is a generalized Kronecker delta (equal to either 1, when i and m refer 

to the same degree of freedom, or 0, otherwise). According to the above 
definition of fundamental solution, the domain integral on the left-hand side of 

eqn (5) is actually evaluated as 



  mmmiimijji pupuu  d, . 
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     Substituting for 
ijm  and 

imu  in eqn (5) according to their expressions in 

eqns (6, 7), one obtains the modified expression of the Somigliana’s identity, 

 





   









 ddddd r

isi

r

isismimiijjimimiim ubutCubuutu  , (9) 

which is used to evaluate displacements imu  (and, subsequently, stresses) at a 

domain point m for prescribed forces ib , it , and boundary displacements iu . 

The term in brackets vanishes only if ib  and it  are in equilibrium, which is not 

necessarily true when one is dealing with approximations. Then, the results are 
in principle influenced by some arbitrary constants smC  [1]. 

2.3 Numerical discretization 

Equation (9) is also used to evaluate the displacements iu  and the traction forces 

it  as the problem’s unknowns along   and u , respectively. In fact, they may 

be approximated along   as  

 nini duu  , (10) 

 ttt ii  , (11) 

where nd , for dnn 1 , is a vector of dn  nodal displacements and inu  are 

interpolation functions with local support, usually polynomials chosen in such a 
way that, at the nodal points, ininu  . Since the traction forces it  are surface 

attributes, the tn  parameters t  are also surface attributes that depend on the 

outward normal i  of the boundary point at which t  is physically attached. 

Generally, dt nn  , as the boundary   may not be entirely smooth, with more 
than one normal at some points. The interpolation functions it  also have local 

support, but are not necessarily locally expressed as inu  (see Section 3). 

     The boundary geometry is approximated from the nodal attributes using the 
same interpolation functions inu  of eqn (10), which consists in an isoparametric 

representation of the problem, exactly as in the finite element method. 
     Replacing iu  and it  in eqn (9) with their boundary approximations given by 

eqns (10, 11), and applying 
mp  at successive boundary points in such a way that 

mmdp   has the meaning of virtual work, one arrives at the basic equation of the 

conventional, collocation boundary element method, as given in the literature,  

    









  ddddd r

isi

r

isismimiiminmninjjim ubtutCubtutdu  , (12) 

except for the term related to the constants smC , that is actually an error term. 

Equation (12) may be written in matrix format as 
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 ε bGtHd , (13) 

where   dndn

mn RH H  is a kinematic transformation matrix,   tndn

m RG  G  

is a flexibility-type matrix and   dn

m Rb b  is a vector of nodal displacements 

equivalent to the applied body forces. The double-layer and single-layer potential 
matrices H  and G  comprise in their definition singular and improper integrals, 
respectively, when source (index m) and field (index either n or  ) refer to the 
same nodal points. Then, special care must be taken in the numerical 
integrations. This has been sufficiently investigated and is not the subject of the 
present outline. The error term ε  in eqn (13), defined according to eqn (12), 
corresponds to residuals whose magnitude depends on the amount of rigid-body 
displacements that are always implicit in the fundamental solution, eqn (7), as 
well as on how refined is the boundary mesh, that is, how accurately the 
boundary traction forces, approximated according to eqn (11), are in equilibrium 
with the applied domain forces ib . This vector of residuals is usually disregarded 

in the implementations shown in the literature [1, 2], or sometimes used as a 
measure of convergence of the numerical model. A consistent numerical model 
must take this term explicitly into account and end up with a formulation that is 
independent of smC  instead of just disregarding it. 

     This specific issue has already been the subject of a theoretical investigation 
[3]. The main results are summarized in the following, also introducing a 
convenient simplification related to the particular solution term b  of eqn (13).  
     The vector of residuals ε  in eqn (13) may be written as 

  pttRC  TTε , (14) 

where   rntn

s RR  R  is defined as 

   dr

isis utR  , (15) 

and the product ptRT  comes from the approximation 

 pr

isi

r

isj

p

ji

r

isi tutuub  
 ddd  , (16) 

whenever a particular solution for the body force problem, as stated in eqn (1), is 
available. By the same token, the vector mb  of equivalent nodal displacements, 

introduced in eqn (13), may be approximated as developed in the following: 

 
,

ddd

p

nmn

p

mi

p

iim

p

ijjimimj

p

jiimi

dHtGb

uuuub



  














 (17) 

since, for a sufficiently refined boundary mesh, the displacements p

iu  and the 

traction forces j

p

ji

p

it  , related to an arbitrary particular solution of the non-
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homogeneous governing eqn (1), whenever available [7], can be approximated 
accurately enough by nodal displacement and traction force parameters p

nd  and 
pt  in terms of the interpolation functions of eqns (10, 11): 

 
.on

,




p

ij

p

ji

p

nin

p

i

tt

duu


 (18) 

     Then, making use of eqns (14, 17), a convenient way of expressing eqn (13) 
is 

     pp ttRCGddH  TT . (19) 

     One identifies in eqn (14), as supported by other linear algebra manipulations 
[3], that the columns of the matrix R  in eqn (19) span the space of traction 
forces  ptt   that cannot be transformed (are not in equilibrium). Then, 

     1TTTT  RRGRC0RRCG , (20) 

which leads to the consistent boundary element equation 

      p

R

p

a

p ttGPttGddH   , (21) 

where  Ra GPG  is the admissible part of G  and 

   T1T RRRRIPIP
  RR  (22) 

is the orthogonal projector onto the admissible space of the traction forces, which 
comprises the subsets of traction forces that are in balance and can therefore be 
transformed into equivalent nodal displacements via the flexibility matrix Ga. 

2.4 Spectral assessment of the matrices involved in the BEM 

Let   rndn

ns RW W  be a matrix whose columns form an orthogonal basis of 

the nodal displacements d  of eqn (19) related to rigid-body displacements, such 

that IWW T . Then, the rigid-body displacement functions r

isu  introduced in 

eqn (7) may be normalized in such a way that their nodal values coincide with 

nsW  at the nodal points, following that  

  onnsin

r

is Wuu . (23) 

     Moreover, it is sometimes advisable to think of the boundary traction forces 

as expressed in terms of equivalent nodal forces   dn

n Rp p  that come up 

from the virtual work statement 
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,or

d

TtLp 

 




tLp

ttudpd

mm

iimmmm 
 (24) 

where TL , as defined above, performs an equilibrium transformation. 
     With the definitions of W  and TL , given above, one checks the equivalence  

 LWR  , (25) 

for R  defined as in eqn (15), which means that, for a finite domain, 

     0ttR0ppW  pp TT . (26) 

     The relations above help to shed light on the spectral properties of the 
matrices H  and aG  of eqn (21). )(HW N  and 0RG a  is a partial 

consistency check. Defining V  as the null space )( THV N , one checks that 

0T aGV , and not 0T aGV , which means that eqn (21) is not completely 

consistent. This is expected, as eqn (21) is obtained from a weighted-residuals 
statement, eqn (4), that is not variationally consistent – just compare it with eqn 
(3). 

2.5 On the numerical solution of the problem 

The inconsistent version of eqn (21), 

    pp ttGddH  , (27) 

obtained by neglecting the residual error ε  in eqn (13), may be expressed as  

 yAx  , (28) 

where the vector x  gathers all the unknown coefficients of d  and t ; y  is the 

vector of known quantities; and the non-symmetric matrix A  is obtained by 
adequately collecting the columns of H  and G  corresponding to the unknown 
coefficients [1]. Although G  is a rectangular matrix, A  becomes square if the 

boundary conditions are adequately introduced [8]. If one is lucky, 0T GV  

and A  is well conditioned. However, there is an in principle uncontrolled 
amount of rigid-body displacements implicit in the term 

imu  of eqn (7), so that 

the good conditioning of A  cannot be assured beforehand [9].  
     The solution of eqn (28), if obtained from eqn (21), leads to a matrix A  that 
is by construction ill conditioned. However, inclusion of the restriction 

  0ttR  pT , eqn (26), enables the establishment of an equation system that is 

always well conditioned, to be solved in terms of generalized inverses. As 
several numerical tests have shown [3, 8], results using either G  or aG  are 

comparable in terms of accuracy, provided that G  does not become ill 
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conditioned. Although the residual ε  of eqn (13) tends to vanish with increasing 
mesh refinement, an eventual ill-conditioning of G , once present, persists 
independently from mesh refinement. 

2.6 Evaluation of a stiffness matrix 

Instead of solving a problem in terms of the transformed system of eqn (28), one 
may need to obtain a formulation in terms of a stiffness-type matrix, 

    pp ppddK  . (29) 

     The matrix K  is obtained by solving for  ptt   in either eqn (21) or (27) 

and making use of TL  defined in eqn (24). A first possibility comes from eqn 
(27), 

   HGLLLK 1T

1_

ntinconsiste , (30) 

where   1GLL  is a {1, 2, 3}-inverse of G  ( GL  supposedly well conditioned). 

An alternative is to resort to the {1, 2, 3, 4}-inverse   1TT 
GGG , obtaining 

   HGGGLK
1TTT

2_

ntinconsiste . (31) 

     Either construction above leads to forces that are not in equilibrium. A 
conceptual improvement is  

   HGLLPLK 1T

3_

 Rntinconsiste . (32) 

     However, the only fully consistent formulation stems from eqn (21) [8], 

   HWWLGLPLK
1TT   aRconsistent . (33) 

3 A subtle simplification and improvement 

The functions inu  and it  that interpolate displacements and traction forces, as 

introduced in eqns (10, 11) for curved, isoparametric elements, are usually 
polynomials of the boundary natural coordinates, a usage possibly borrowed 
from the finite element tradition. This is fine for the displacements 
(representation of rigid-body displacements is a requirement) and suited for the 
evaluation of the matrix H  defined in eqns (12, 13), since the Jacobian J  of 

the parametric transformation cancels out in the product dj , whether a 2D or 

3D problem is being modeled, and the integrand consists of low-order 
polynomials that multiply the kernel 

ijm .  

     However, there is no justification for the traction forces to be interpolated by 
a polynomial along a curved boundary, since, because of the term j  in eqn (2), 
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the boundary forces vary according to the inverse of J  (there is not such a 

requirement as the representation of constant-traction forces along the boundary). 
Then, one suggests the replacement of the polynomials it  in eqn (11) by (a 

caveat: do not use together with the quarter-point trick in fracture mechanics) 

 


 ii t
J

J
t  , (34) 

where 


J  is the value of the Jacobian at the point characterized by the subscript 

 . Nothing changes formally in the developments outlined for the CBEM, 
except that the numerical integration of the matrix G  becomes much easier. In 

fact, J  cancels out in the product dit , according to eqns (12, 13), for it  

defined as above, and the only term to be approximated by a polynomial, in the 

numerical integration of G , is the kernel 
imu . Moreover,   d iimm tuL  in eqn 

(24) now involves only low-order polynomials in the integrand. 

4 Numerical examples 

Figure 1 illustrates an irregularly-shaped continuum for a set of five 2D 
numerical examples of potential problem, which presents the same conceptual 
issues as the ones of an elasticity problem. The mesh shown corresponds to 
examples M2_quad and M2_quadN, with a total of 62 quadratic elements and 
124 nodes (46 elements along the external boundary and 16 elements modeling 
the hole indicated). There are also examples M1_quad and M1_quadN, with 23 
quadratic elements and 46 nodes only along the external boundary (no hole is 
modeled), as well as example M1_lin with the same mesh as before, but 
comprising 46 linear elements. In the examples M2_quad and M1_quad, 
polynomials it  are used, as initially proposed in eqn (11). In the examples 

M2_quadN and M1_quadN, one uses it  according to eqn (34). 
 

 

Figure 1: Discretization scheme to illustrate five numerical examples [4]. 
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     The first row of Table 1 shows the Euclidean norms of the matrix product 

WKT  for the examples under analysis, where K  is the inconsistent matrix 

defined in eqn (30), to check that the lack of equilibrium of the ‘stiffness’ system 
derived from the CBEM is not so relevant for a sufficiently fine mesh, as already 
known in the literature. (Such an Euclidean norm for the ‘stiffness’ matrices of 
eqns (32, 33) is equal to zero by construction.) One also shows, in the second 

row, the Euclidean norms of the matrix product VGT

a , for aG  as in eqn (21), to 

attest the comment made in the paragraph after eqn (26) as well as to corroborate 
the outlines of Sections 2.5 and 2.6.  

Table 1:  Euclidean norms of two matrix products. 

 M1_lin M1_quad M1_quadN M2_quad M2_quadN 

WKT  .688e-3 .167e-2 .168e-2 .798e-3 .799e-3 

VGT

a  .545e-2 .442e-2 .448e-2 .232e-2 .233e-2 

 
     One also runs a series of patch tests for a total of ten potential fields applied 
to the models, eight of them, numbered 1 to 8, are listed in the vector 

332244322322 633 xyyxyxyxyyxxyxyxxyyx  , 

besides potential fields number 9 and 10 that correspond to 2/)ln(r , where r  

is the distance to the source points (-5, 2) and (10, 2) marked as two crosses in 
Figure 1. The accuracy of the solution with the inconsistent matrix G , as given 
in eqn (27), is assessed in the first graphic of Figure 2, for all ten potential fields, 
with corresponding values of d  and t  evaluated analytically. The results using 

aG , as in eqn (21), are almost indistinguishable from the ones with G . 

     The second graphic in Figure 2 assesses the accuracy of using TL , as given in 
eqn (24), to evaluate equivalent nodal gradients, for p  directly integrated as 

  diimm tup . The last graphic assesses the accuracy of the ‘stiffness’ system of 

eqn (29), where K  is the inconsistent matrix defined in eqn (30). Results using 
the alternative definitions of K  in eqns (31-33) are almost indistinguishable 
from these ones. The generalized inverses used to arrive at K  in eqns (30-33) 
deserve further numerical investigation. In fact, space restrictions of the 
manuscript prevent the elaboration of many interesting conclusions from these 
simple examples and graphics. 
     The curved parts of the boundaries are very deleterious to the numerical 

accuracy, particularly affecting the error norm ptL T . One checks that the 

suggestion expressed in eqn (34) significantly improves the problems’ response 

to constant gradients, in terms of both ptL T  and GtHd  , but does not lead 

to perceptible improvements when testing for higher order gradients. However, 
the simplification achieved with eqn (34) regarding numerical implementation is 
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per se an improvement. Owing to the errors introduced by the approximation 
tLp T  for curved boundaries, results in terms of GtHd   are in general 

significantly better than in terms of pKd   – observe that this is not true for 

linear elements. 
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Figure 2: Error norms for three matrix equations of the potential problem. 
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5 Conclusions 

As outlined, the matrix G is actually rectangular. One suggests a subtle 
improvement and simplification of the boundary representation of traction 
forces. The issue of continuity or discontinuity of such forces at corner points is 
simply non-existent in the frame of a consistent formulation. The system matrix 
is always well conditioned for an adequately formulated problem. An extended 
version of this manuscript is being prepared for publication, in which spectral 
properties and generalized-inverse concepts of the matrices are further explored. 
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