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Abstract

This paper is concerned with a new approach for avoiding the fictitious
eigenfrequency problem to boundary element analysis of three-dimensional
acoustic problems governed by Helmholtz equation. It is well known that in
solving without any care the external acoustic problem which includes internal
sub-domains by means of the boundary integral equation, the solution is disturbed
at fictitious eigenfrequencies corresponding to the internal sub-domains. The
present paper proposes a new boundary element analysis to circumvent such
the fictitious eigenfrequency problem, which is an alternative boundary integral
equation approach to the Burton-Miller one. The present approach is implemented,
and its validity and effectiveness are demonstrated through numerical computation
of typical examples.

1 Introduction

Whenever the acoustic problems which include the sub-domains without vibration
are solved by means of the usual boundary integral equation without any care,
the so-called fictitious eigenvalue issue is encountered. It is well known that the
solution of the external acoustic problem is violated near the eigenfrequencies of
the inside sub-domains. In practice, if we locate a few source points in the sub-
domains without vibration and solve the system of equations by the method of
least squares, we can circumvent the above eigenvalue issue [1–3]. Nevertheless,
in finding the optimal shapes of acoustic fields, for example, it is almost impossible
to apply the above practical mehtod, as the current shape is changing and the final,
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converged solution is obtained in an iterative manner. It is true that we cannot
find an appropriate number of external points to be added and their appropriate
locations for such problems. There is a remedy of this problem, however, which
is called the Burton-Miller method. This method employs a linearly combined
boundary integral expression of the usual boundary integral equation (OBIE) and
the normal derivative boundary integral equation (NDBIE) multiplied with the
coupling parameter [4, 5].

The present paper proposes an alternative approach to this method to reduce
burden of calculating the coefficients in matrixes of the final system to be solved.
If we assume to use higher-order boundary elements, the Burton-Miller expression
is used at a smaller number of element nodes, and at the other elemet nodes
we employ the NDBIE multipied with the same coupling parameter. Through
numerical computations it is demonstrated that the present approarch and the
Burton-Miller one provide the almost identical results to circumvent always the
fictitious eigenvalue issue.

2 Theory

It is assumed that the acoustic problems to be investigated in this study are in a
steady-state vibration and governed by the Helmholtz equation:

∇2p (x) + k2p (x) + f (x) = 0 (1)

where p (x) denotes the sound pressure, f (x) the distributed source term, and k the
wave number. Denoting C0 by the sound velocity, the wave number k is expressed
by using the angular velocity ω as

k =
ω

C0
(2)

The boundary conditions are prescribed as

p (x) = p̄ (x) (3)

q (x) =
∂p

∂n
(x) = q̄ (x) (4)

where q (x) is related to the outward normal velocity of a particle v (x) and the
mass density ρ as follows:

q (x) = −iωρv (x) (5)

2.1 Regularized boundary integral equation

Under the assumption of a single point sound source with intensity I at the point
xs, the boundary integral equation can be expressed in a regularized form [6] as

∫
Γ

{q∗ (x, y) − Q∗ (x, y)} p (x) dΓ(x) +
∫

Γ

Q∗ (x, y) {p(x) − p(y)} dΓ(x)
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= −iωρ

∫
Γ

p∗ (x, y) v(x)dΓ(x) + Ip∗ (xs, y) (6)

The fundamental solutions which are denoted by an asterisk are given by

p∗ (x, y) =
1

4πr
exp (−ikr) (7)

q∗ (x, y) = − 1
4πr2

(1 + ikr) exp (−ikr)
∂r

∂n
(x) (8)

Q∗ (x, y) = − 1
4πr2

∂r

∂n
(x) (9)

where r denotes the distance between the source point y and a field point x.
The boundary integral equation (6), which is called in this paper “OBIE”,

is usually applied to the standard analysis of acoustic fields and in most cases
obtain successful results. Unfortunately, however, in the acoustic fields to be
studied in this paper, Eq.(6) suffers the fictitious eigenfrequency problem, and
gives “ghost” solutions at an infinite number of eigenfrequencies for internal sub-
domains without vibration. To improve this situation, we have to prepare another
expression of the boundary integral equation and to use it together with Eq.(6).

2.2 Normal derivative boundary integral equation

We now differentiate Eq.(6) with respect to the source point y. Then, we can obtain
the following expresssion omitting the source term:∫

Γ

{
q∗,j (x, y) − Q∗

,j (x, y)
}

p (x) dΓ(x) +
∫

Γ

Q∗
,j (x, y) {p(x) − p(y)} dΓ(x)

−
{∫

Γ

Q∗ (x, y) dΓ (x)
}

p,j (y) = −iωρ

∫
Γ

p∗,j (x, y) v(x)dΓ(x) (10)

We take into account a uniform gradient of the sound pressure p in the above
expression, and regularize the boundary integral expression. Then, we can finally
derive the following regularied boundary integral eqaution [7, 8]:∫

Γ

{
q̃∗ (x, y) − Q̃∗ (x, y)

}
p (x) dΓ(x)

+
∫

Γ

Q̃∗ (x, y) {p(x) − p(y) − rm (x, y) p,m (y)} dΓ(x)

= −iωρ

∫
Γ

{p̃∗ (x, y) − ũ∗ (x, y)} v(x)dΓ(x)

− iωρ

∫
Γ

ũ∗ (x, y) {v (x) − nm (x) p,m (y)} dΓ (x) + Ip̃∗ (xs, y) (11)

where (̃) = ∂()/∂n (y), and the asterisked functions are related to the fundamental
solution. This normal derivative boundary integral equation is called “NDBIE” in
this paper.
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Together with the two boundary integral equations, we can explain the boundary
element methods for solving the acoustic problems under consieration as in the
following manner:

1 The standard BEM uses only OBIE for all nodal points,
2 The Burton-Miller Approach adopts OBIE + αNDBIE for all nodal points,
3 The present proposal employs OBIE + αNDBIE at a smaller number of element

nodes, and at the other element nodes uses only the expression αNDBIE.

It is intersting to note that according to Ref. [5], we choose the coupling parameter
α as α = i/k.

3 Numerical results and discussion

We shall take a breathing sphere with a uniform velocity v on its whole surface,
which is located in an infinite acoustic 3-D space. It is well known that the acoustic
problem of the external domain with infinity involves the fictitious eigenfrequency
issue. The solution by means of the usual boundary integral equation (OBIE)
method is disturbed near the eigenfrequencies of the inside sphere itself.

The present study employs quadrilateral boundary elements with second-order
polynominal interpolation functions as shown in Fig. 1. When the source point is
located at a corner point, the element is divided into two subelements as Type A
shown in Fig. 2. On the other hand, when the source point is located at a middle
node, the element is divided into three sub-elements as shown as Type B in the
figure. The singular integrals are evaluated by such a sub-element method [9].

ξ

: Applying combined BIE
: Applying NDBIE multiplied by i/kη

Figure 1: Quadrilateral boundary element with quadratic interpolations.

Boundary element division of the 1/8 part of the spherical surface is shown in
Fig. 3. Three evaluation points for the sound pressure p are placed as the measuring
point shown in the figure. It is assumed that the mass density ρ = 1.2 [kg/m3]
the sound velocity C0 = 340 [m/s].

and
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Type A Type B

: Source point

Figure 2: Types of dividing for sub-elements.
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Figure 3: Analysis model 1 and boundary element discretization.

The analytical solution is available in the literature [10] and given by

p (r) = v
iωρa2

(1 + ika) r
exp {−ik (r − a)} (12)

Figure 4 shows the numerical results obtained by the above three methods. There
seem to be the fictitious eigenfrequencies near the values of nondimensional wave
numbers 3 and 6, as the numerical solutions by the OBIE are disturbed, while the
other two methods gives smooth, accurate results. Detailed views near ka = 3,
and ka = 6 are shown in Figs. 5 and 6, respetively.

It can be seen that the present method provides accurate numerical solutions
without disturbances due to the fictitious eigenfrequency issue, under a smaller
amount of computational burden in comparison with the Burton-Miller method [4].
It is proved from a mathematical point of view that the present method can always
provide accurate results without any disturbance due to the fictitious eigenvalue
issue.
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Figure 4: Numerical results obtained by OBIE, Burton-Miller and present Hybrid
methods.
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Figure 5: Detailed view of numerical results between ka = 3.1378 and 3.1453.

Next, we shall consider the acoustic field between a rigid sphere with radius a1

and a breathing sphere with radius a2 concentrically located as shown in Fig. 7.
In the numerical computation, it is assumed that a1 = 0.25 m and a2 = 0.1 m. The
boundary conditions are assumed such that the breathing sphere is subject to the
same uniform normal particle velocity as the previous example and the condition
on the outside spherical surface is rigid so that the particle velocity vanishes there.
The 1/8 part of the two spherical boundary surfaces is divided into the same
number of elements as shown in the figure. The numerical results obtained are
shown in Fig. 8. Numerical computation is performed by an interval 1 Hz from
1 Hz to 2 kHz. Even in this acoustic problem, the fictitious eigenfrequency problem
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Figure 6: Detailed view of numerical results between ka = 6.2802 and 6.2862.
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Figure 7: Analysis model 2 and its boundary element discretization.

occurs. That is, near the non-dimensional wavenumber ka = 3 in this calculation
the OBIE gives disturbed numerical results different to those by the other two
methods.

Other 3-D numerical examples and analysis of 2-D acoustic fields with a few
examples can be found in authors’ separate papers [11, 12].

4 Concluding remarks

The present paper has proposed an alternative approach to the Burton-Miller
method to give accurate results without disturbances due to the eigenfrequency
issue in the acoustic problems. The usefulness of the proposed method was
demonstrated through numerical computations and comparison with other ones.
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Figure 8: Numerical results obtained by OBIE, Burton-Miller and present Hybrid
methods.

It is noted again that the proposed method can give the almost same results as the
Burton-Miller one under a smaller burden in calculating the coefficient matrixes in
the final system.

As future work along this line, it can be recommended to develop a rigorous
procedure for finding the optimal shapes of acoustic fields. For such problems, it is
inevitably necessary to have an analysing procedure with a reduced computational
task which prevents the fictitious eigenfrequency problem from taking place.

References

[1] Tanaka, M., Matsumoto, T. & Nakamura, M., Boundary Element Methods,
Baifukan, Tokyo/Japan, 1991.

[2] Kobayashi C.S.(ed), Wave Analysis and Boundary Element Method, Kyoto
University Press Online, Kyoto/Japan, 2000.

[3] Schenck, H.A., Improved integral formulation for acoustic radiation
problems, J. the Acoustical Society of America, Vol.44, No.1, pp.41–58,
1968.

[4] Burton, A.J. & Miller, G.F., The application of integral equation methods
to the numerical solution of some exterior boundary-value problems, J. the
Royal Society of London, Ser. A, Vol.323, pp.201–210, 1971.

[5] Cunefare, K.A. & Koopmann, G., A boundary element method for acoustic
radiation valid for all wavenumbers, J. the Acoustical Society of America,
Vol.85, No.1, pp.39-48, 1989.

[6] Matsumoto C.T.D. & Tanaka C.M.C. Alternative dis-
cretization technique for regularized boundary integral
equation, Transactions JASCOME, Vol.1, pp.7–12, 1991.

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

66  Boundary Elements and Other Mesh Reduction Methods XXIX



[7] Arai, M., Adachi, T., & Matsumoto, H. C. Highly accurate analysis by
boundary element method based on uniform gradient condition (Application
for formulation of classical potential problems), Transactions of Japan
Society of Mechanical Engineers (JSME), Ser. A, Vol.61, No.581, pp.161–
168, 1995.

[8] Matsumoto C.T.D. & Tanaka, M. C. Evaluation of the hypersingular and
regularized boundary integral equations for the boundary potential gradients
in 2D fieldC Transactions JSME, Ser. A , Vol.64, No.619, pp.743–750, 1998.

[9] Yuuki C.R.D. & Kisu C.H., Boundary Element Methods for Elastic Analysis,
Baifukan, Tokyo/Japan, 1987.

[10] Itou, T., Basic Acoustical Engineering, Vol.1, Corona, Tokyo/Japan, pp.268–
270, 1990.

[11] Arai, Y., Tanaka, M. & Matsumoto, T., New boundary element analysis of 3-
D acoustic fields avoiding the fictitious eigenfreqency problem, Transactions
JSME, Ser. C, to be printed.

[12] Tanaka C.M., Matsumoto C.T. & Arai, Y., A boundary element analysis for
avoiding the fictitious eigenfrequency problem in acoustic field (2nd report:
Revised version)C Transactions JSME, Ser. C, Vol.72, No.719, pp.2008–
2093, 2006.

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 44,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXIX  67


