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Three-dimensional steady thermal stress
analysis by triple-reciprocity BEM
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Abstract

Steady thermal stress problems without heat generation can be solved easily by
the boundary element method. However, for the case with arbitrary heat
generation, the domain integral is necessary. In this paper, it is shown that the
problems of three-dimensional steady thermal stress with heat generation can be
solved approximately without the domain integral by the triple-reciprocity
boundary element method. In this method, an arbitrary distribution of heat
generation is interpolated by boundary integral equations. In order to solve the
problem, the values of heat generation at internal points and on the boundary are
used.

Keywords: Thermal stress, triple-reciprocity method, harmonic function,
boundary element method.

1 Introduction

The steady thermal stress problem without heat generation can be solved easily
by the boundary-element method (BEM). When analysis of thermal stress under
arbitrary heat generation within the domain is carried out by the BEM, generally
the domain integral is necessary. By this method, however, the merit of BEM for
the simple preparation of data is lost. Several other methods have been
considered. Nowak and coworkers have proposed the multiple-reciprocity
method [1]. Ochiai et al. have proposed an approximate method using the cells of
boundary type [2].

In the conventional multiple-reciprocity method, heat generation must be
given analytically and the analytical derivation of heat generation on the
boundary is necessary. Fundamental solutions of higher order are used to make
the solution converge for some problems. Accordingly, the conventional
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multiple-reciprocity method is not suitable for practical steady thermal stress
analyses with arbitrary internal heat generation in the domain. On the other hand,
Ochiai and coworkers have proposed the improved multiple-reciprocity BEM for
the steady heat conduction problem, steady thermal stress problem and
elastoplasticity problem [3-6].

It is difficult to understand the improved multiple-reciprocity BEM. In this
work, the thermal stress problem is solved by the triple-reciprocity BEM, which
is derived from the improved multiple-reciprocity BEM [4]. Using this method,
a highly accurate solution may be obtained solely by using the fundamental
solutions of lower order without the need for data preparing. In this method, heat
generation distribution is interpolated using the boundary integral equations [3-
6]. Point and line heat sources are easily treated by the conventional BEM.
Therefore, an arbitrary distributed heat source is examined in this paper.

In this paper, the three-dimensional thermal stress problem is solved by the
triple-reciprocity boundary elements method. In this method, a polyharmonic
function with volume distribution is used in order to obtain an exact solution.
Even if the distribution of heat generation is complicated, the exact solution can
be obtained. The use of a polyharmonic function with volume distribution
reduces the CPU time.

2 Basic equations

2.1 Heat conduction

Point and line heat sources can easily be treated by the conventional BEM. In
this study an arbitrarily distributed heat source WIS is treated. In steady heat
conduction problems, the temperature 7" under an arbitrarily distributed heat
source Wls is obtained by solving the following equation:

_W1S
A

VT = (1)

where A is thermal conductivity. Denoting heat generation by W°(q), the

boundary integral equation for the temperature in the case of steady heat
conduction problems is given by [7]

5T(Q) aT(PQ)

CT(P) = [ {T,(P.0) 7(0)}dr(Q) + 2" [ Tp.gW’ (9)dQ

2

where C=0.5 on the smooth boundary and C=1 in the domain. The notations /7~
and (2 represent the boundary and domain, respectively. The notations p and ¢
become P and Q on the boundary. In the case of three-dimensional problems, the
fundamental solution 7', (p, q) in Eq.(2) for the steady temperature analyses and
its normal derivative are given by
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1
Ti(p.q) = m 3)

h(p.0)_ -1 or
on 47z r? On

4

where 7 is the distance between the observation point p and the loading point g.
As shown in Eq.(2), when there exists arbitrary heat generation WIS (¢) in the
domain, the domain integral is necessary. Therefore, the triple-reciprocity BEM
[5-8] is used.

2.2 Interpolation

An interpolation method for heat generation is shown using boundary integral
equations in order to avoid internal cells. The distribution of heat generation WIS
is given by

vewS =-wy (5)
2 S A P
VY == Wi (6)

m=l1

From Egs.(5) and (6), the following equation can be obtained.
4SO P
Vw®© = Z W3A(m) ()
m=1

where the function W;; expresses a state of a uniformly distributed

polyharmonic function in a spherical region with radius 4. In order to solve Egs.
(5) and (6), a polyharmonic function is introduced. Polyharmonic function 7 is
defined as

VT, =T, (8)
Therefore, polyharmonic function 7;is determined as
1
T, = J‘F—Z[J‘rszfldr]dr 9)

Three-dimensional polyharmonic function 7; and its normal derivatives are
given by

r2j—3

T/ (P,Q) =m (10)
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oy _@f=3r"or
on 47(2f —-2)! on

(11)

Figure 1 shows the shape of polyharmonic functions, and bi-harmonic function
T, is not smooth at =0. In the three-dimensional case, a smooth interpolation
cannot be obtained solely by bi-harmonic function 75. In order to obtain a
smooth interpolation, the polyharmonic function with volume distribution 73, is

introduced. A polyharmonic function with volume distribution T 4 as shown in
Fig.2 is defined as [6]

Ty = jQA T, (P,q)dQ, = jOA [ 7/ (P.q)dsda = jOA j;”j: T, (P,q)a sin 0d6d gda
(12)

where Q , is a spherical region with radius 4, and S is the surface of spherical
shell with radius a. The function 7j can be easily obtained using the

relationships r*=R*+a’ —2aRcosO and dr=aRsin@d@ as shown in Fig.2.
This function is written by using 7 instead of R similarly to that in Egs. (10) and
(11), though the function from Eq. (12) is the function of R. The newly defined

function T "4 can be explicitly shown as

3
T1A=A— , >4 (13)
3r
)
== <A (14)
6
3 A2
T, ==+ , >A (15)

1012 4% -154*

T, =- , r<A 16
24 120 < (16)
3 4 2 2 4
T3A:A (35rt + 4247 +34%) 4 a7
2520r
6 4 02 2 44 6
I, =" +21r ASJ;L(())Sr Ate3sa® a8)

3 6 4 2 2 4 6
T4A:A QU3 A 127 A v AN 19
45360r
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— 8 +36r%4% +378r* 4% + 42012 4° + 63 4°
362880 ’

Ty, = r<d (20)

Let the number of W31; be M. Using Green’s theorem two times and Eq.(8),
Egs.(5) and (6) become

0.5
0.4 Tus
& 0.3 Taa T
T
0.2
Tz
0.1
0.0
o 1 2 3 4
r
Figure 1: Functions (T}, Ty).

Figure 2: Notations for polyharmonic function with volume distribution.

WP (Q) OTH(P,Q)
on

N
o Wi (Q)}dl(Q)

2
cwii(Py=Y (-1 L Ty (P,Q)
/=1

M
=2 Do s (P Wiy (9) 1)

m=1
Moreover, Wzs in Eq. (6) is similarly given by

aWS(Q) oT, (P 0)

CW5(P) = j (T(P,0) W (0)}dI(Q)

+ ZT;A(Pﬂ q)WaZW(fI) 22)

m=1
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From Egs. (21) and (22), the unknown point load W;Z, (¢) and 8W35 (Q)/on can

be obtained [5,6]. Using Green’s theorem three times and Eqgs.(5), (6) and (8),
Eq.(2) becomes

aT(Q) _on (P 9

CT(P)= j {T,(P,Q) T(0)}dI(Q)
. an (Q) 8Tf+1(P,Q) s
-4 ; [T (PO =L = - LI (0N 0)
M
+ A T (P (@) (23)
m=1

2.3 Thermal stress

Next, in order to obtain the thermal stresses, let us consider the thermoelastic
displacement potential @ given by [2]

cap)=[ (2 LD ar o)+ 1 4P (@1
24)

where
#(P.0) = mTy(P.Q) =22 (25)

Denoting Poisson's ratio by vand the coefficient of linear thermal expansion by
a, my is given by m=(1+v)a/(1-v). Now, let us introduce the high-order function
¢, defined by

Vi =9, (26)

Then, using Eqgs.(5), (6) and (8) and Green's theorem two times, Eq.(24) can be
written as

(Q)¢1(P 0)- T(Q)a¢1(P 9 (o)

WS Q) 04,.(P.0)
on on

CoP) = i

- 1‘1; jr {$r0(P.0) WS (0)}dr(Q)

M
+/1712¢3A (P’q)W;;(m) (9) 27)

m=1

where
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¢, (P,q)=myT;,(P,q) (28)
Pu(P.q) =myTr,14(P,q) (29)

In the infinite space, the displacement u; and stress Eij are obtained by

(8]

- 0D
P =— 30
“=o (30)
- o*D
G = 2G (e~ 8;myT) 31
Ox;0x ;

where G is the shearing modulus.
Using the relationship between the thermoelastic displacement potential and

the displacement, the boundary integral representation for the displacement is
obtained as [2, 8]

Ciju; (P)= I {”y (P, Q)pj O)- pPij (P, Q)u/(Q)}dF(Q)

)
+[ 1@ B2 O 0p )aro)
-1 s 5“,'(/+1)(P,Q) L) (f+1)
+2 ; [ i@ — S L (P g)ar )
2P g (@) (32)

m=1

where u;(P,0) and p;(P,Q) are

1
”ii(P’Q) :m[a—w)@j +r,r,; (33)

py(P,0) = [—{(1 2v)6; +3r,; 1,y = (1=2v)(ry ny =1, )] (34)

87zG(1 —v)r?

In Eqgs.(33) and (34), r,=0r/Ox; and n; is the unit normal component. Using
Eq.(27) and (30), ul[f !and ulD]A are given by

X _ 2f-2
ul(f):m()(zf 1)7",,-1”
47(2f)!

(35)
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N 123
e 2 (36)
on 472 ) on
3 6 4 42 2 44 46
y ZmOA r,; (1057 +189r A2 +27r 4" - A4°) A 37)
45360r
6 4 42 2 44 6
ui@)A:mOrr,i( r°+27r"A° +189r° 4" +1054°) <A (39)

45360

The boundary integral representation of stresses in the domain is given by

o;(p)= J.r 1Dy (p, Q) P (Q) = Sy (P, O)uy (O) 1T (Q)
oo (p,0) aT(Q)

@ ~ o (p,OAr(©Q)
oD
_ z/ (P Q) an+1(Q) (f+1)
i j{WM(Q) - - (p.0)}dr(Q)
+ i Za“)A(p,q)Wﬂ(m)(q) (39)
where
Dy =[1=20)18 7, 48y 7= k4317, ”‘]8 T @
G ,or
Sj=—18 [(1 2v)8;1, i +V(OTsi+Our )—5r,ir,jr,k]+3V(nir,jr,k+njr,ir,k)
r
+(=2v)@nyr,; ry ;40 6y + 1,6 ) — (1—-4v)no; }4 (l » (41)

Using Eq.(27) and (31), functions 0' i 60‘“ ) /8n and O'(f 4 in Eq.(39) are
given by

ol - Gmo2f ~ 23
v 27(21)!

Fer-vs,+er-3rr,] (42)

octh) -/
i _Gmy@2f-Dr TR (2f—l)ﬁ5ij +(2f =5, ru‘ﬂ
an 202! o -

(43)
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o4 _ Gmod’
Y 2268007
+3(105r° +63r* 4> —9r° 4% + A%)r,; v, ;] >4 (44)

[-5,(525r° +567r* 4% +27r° 4% + 4°)

o =%[5..(4r" —81r* 4% =378r2 4% —1054°) + 312 (—r* +18/2 4% + 634" )r,, ]
v 113407 i

r<4 (45)
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(a) Boundary elements (b) Internal points

Figure 3: Cylinder with heat generation (quarter-region).
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Figure 4: Temperature distribution on cylinder.

3 Numerical examples

In order to ensure the accuracy of the present method, the thermal stresses in a
circular cylinder, the inner and the outer radius of which are @ and b as shown in
Fig.3, are obtained under heat generation:
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_ Wo(bz—f’z)

i b —a?

(46)

where 7 is the radial coordinate and =10 mm and »=30 mm. The internal and
outer pressures are zero. Moreover, Wy/A=1 °Cmm™ is assumed. The two-
dimensional state, in which there is no heat flow in the z direction, is assumed.
The upper and lower surfaces of the cylinder are restricted in the z-direction. The
temperature at 7=a and b is 0 °C. Young's modulus E, Poisson's ratio v and the
coefficient of linear thermal expansion ¢ are assumed to be 210 GPa, 0.3 and
11x10° K, respectively. The number of discretized constant boundary element
is 680, and the internal points is 45, as shown in Fig.3(a) and (b). The
temperature distribution is given in Fig.4, where the solid lines show the exact
solutions. Figure 5 shows the radial and circumferential thermal stress
distributions with an exact solution. Radius 4; of spherical region in Eq. (12) at
internal points p; is obtained by

e min;_ 5 [r(p:q;)]

i 5 (47)

where 7(p,q;) is the distance between the internal points p; and g¢; for
interpolation.

-20 u=0.5

u=0.2

Stress MPa

u=0.05
-100 . BEM

— Exact

0 1 2 3 45 6 7 8 810
X mm

Figure 5: Stress distribution on cylinder.

Next, the thermal stresses in a cube, of length Z=10 mm, as shown in Fig.6,
are obtained with the heat generation.

W =Wy exp(~1z) (48)

The temperature at x=0 is 0°C, and is adiabatic at y=0, z=0, y=10, z=10 and
x=10.
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(a) Boundary elements (b) Internal points

Figure 6: Cube with heat generation.
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Figure 7: Interpolation of heat generation.
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Figure 8: Stress distribution on in cube cube (G,,).
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The surfaces at x=0mm and x=10mm are free, and the displacements of
surfaces at y=z=0mm and y=z=10 mm are 0. Heat generation Wo/Ai=1 ‘Cmm™ is
assumed. The number of discretized constant boundary element is 600, and the
internal points for interpolation is 64, as shown in Fig.6(a) and (b). The other
conditions are the same as in Fig.3. Figure 7 shows comparison with the
interpolated value and given distributions of heat generations at £ =0.05, 0.2 and

0.5 mm™. Figure 8 shows thermal stress distribution (o,,) at y=z=5 mm.

4 Conclusion

It has been shown that it is possible to express the distributions of heat
generation using integral equations. It has also been shown that steady thermal
stress analysis of higher accuracy using the boundary integral is possible by the
triple-reciprocity BEM even in the case of arbitrary distributions of heat
generation. Accordingly, solely by adding the data of the values at internal points
and on the boundary for the distributions of heat generation, the analysis of
steady thermal stress with heat generation has become possible using only few
data values. In the presented formulation, the thermoelastic displace potential is
very effective method.
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