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Abstract 

Steady thermal stress problems without heat generation can be solved easily by 
the boundary element method. However, for the case with arbitrary heat 
generation, the domain integral is necessary. In this paper, it is shown that the 
problems of three-dimensional steady thermal stress with heat generation can be 
solved approximately without the domain integral by the triple-reciprocity 
boundary element method. In this method, an arbitrary distribution of heat 
generation is interpolated by boundary integral equations. In order to solve the 
problem, the values of heat generation at internal points and on the boundary are 
used. 
Keywords: Thermal stress, triple-reciprocity method, harmonic function, 
boundary element method. 

1 Introduction 

The steady thermal stress problem without heat generation can be solved easily 
by the boundary-element method (BEM). When analysis of thermal stress under 
arbitrary heat generation within the domain is carried out by the BEM, generally 
the domain integral is necessary. By this method, however, the merit of BEM for 
the simple preparation of data is lost. Several other methods have been 
considered. Nowak and coworkers have proposed the multiple-reciprocity 
method [1]. Ochiai et al. have proposed an approximate method using the cells of 
boundary type [2]. 
     In the conventional multiple-reciprocity method, heat generation must be 
given analytically and the analytical derivation of heat generation on the 
boundary is necessary. Fundamental solutions of higher order are used to make 
the solution converge for some problems. Accordingly, the conventional 
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multiple-reciprocity method is not suitable for practical steady thermal stress 
analyses with arbitrary internal heat generation in the domain. On the other hand, 
Ochiai and coworkers have proposed the improved multiple-reciprocity BEM for 
the steady heat conduction problem, steady thermal stress problem and 
elastoplasticity problem [3-6].  
     It is difficult to understand the improved multiple-reciprocity BEM. In this 
work, the thermal stress problem is solved by the triple-reciprocity BEM, which 
is derived from the improved multiple-reciprocity BEM [4]. Using this method, 
a highly accurate solution may be obtained solely by using the fundamental 
solutions of lower order without the need for data preparing. In this method, heat 
generation distribution is interpolated using the boundary integral equations [3-
6]. Point and line heat sources are easily treated by the conventional BEM. 
Therefore, an arbitrary distributed heat source is examined in this paper. 
     In this paper, the three-dimensional thermal stress problem is solved by the 
triple-reciprocity boundary elements method. In this method, a polyharmonic 
function with volume distribution is used in order to obtain an exact solution. 
Even if the distribution of heat generation is complicated, the exact solution can 
be obtained. The use of a polyharmonic function with volume distribution 
reduces the CPU time. 

2 Basic equations 

2.1 Heat conduction  

Point and line heat sources can easily be treated by the conventional BEM. In 
this study an arbitrarily distributed heat source SW1  is treated. In steady heat 
conduction problems, the temperature T under an arbitrarily distributed heat 
source SW1  is obtained by solving the following equation: 
 

λ

SWT 12 −
=∇                                              (1) 

 

where λ is thermal conductivity. Denoting heat generation by )(1 qW S , the 
boundary integral equation for the temperature in the case of steady heat 
conduction problems is given by [7] 
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where C=0.5 on the smooth boundary and C=1 in the domain. The notations Γ 
and Ω  represent the boundary and domain, respectively. The notations p and q 
become P and Q on the boundary. In the case of three-dimensional problems, the 
fundamental solution T

１
(p, q) in Eq.(2) for the steady temperature analyses and 

its normal derivative are given by  
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where r is the distance between the observation point p and the loading point q. 
As shown in Eq.(2), when there exists arbitrary heat generation )(1 qW S  in the 
domain, the domain integral is necessary. Therefore, the triple-reciprocity BEM 
[5-8] is used.  

2.2 Interpolation  

An interpolation method for heat generation is shown using boundary integral 
equations in order to avoid internal cells. The distribution of heat generation SW1  
is given by 
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From Eqs.(5) and (6), the following equation can be obtained. 
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where the function P
AW3   expresses a state of a uniformly distributed 

polyharmonic function in a spherical region with radius A. In order to solve Eqs. 
(5) and (6), a polyharmonic function is introduced. Polyharmonic function Tf is 
defined as 
 

           ff TT =∇ +1
2                                                   (8) 

 
Therefore, polyharmonic function Tf is determined as  
      

∫ ∫ −= drdrTr
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Three-dimensional polyharmonic function Tｆ  and its normal derivatives are 
given by 
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Figure 1 shows the shape of polyharmonic functions, and bi-harmonic function 
T2 is not smooth at r=0. In the three-dimensional case, a smooth interpolation 
cannot be obtained solely by bi-harmonic function T2. In order to obtain a 
smooth interpolation, the polyharmonic function with volume distribution T2A is 
introduced. A polyharmonic function with volume distribution fAT  as shown in 
Fig.2 is defined as [6] 
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where AΩ  is a spherical region with radius A, and S is the surface of spherical 
shell with radius a. The function TfA can be easily obtained using the 
relationships θcos2222 aRaRr −+=  and θθdaRdr sin=  as shown in Fig.2. 
This function is written by using r instead of R similarly to that in Eqs. (10) and 
(11), though the function from Eq. (12) is the function of R. The newly defined 
function fAT  can be explicitly shown as  
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Let the number of P
AW3  be M. Using Green’s theorem two times and Eq.(8), 

Eqs.(5) and (6) become  
 

 
Figure 1: Functions (Tf, TfA). 

 

Figure 2: Notations for polyharmonic function with volume distribution. 
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Moreover, SW2  in Eq. (6) is similarly given by 
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From Eqs. (21) and (22), the unknown point load )(3 qW P
A  and ∂ SW3 (Q)/∂n can 

be obtained [5,6]. Using Green’s theorem three times and Eqs.(5), (6) and (8), 
Eq.(2) becomes 
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2.3 Thermal stress      

Next, in order to obtain the thermal stresses, let us consider the thermoelastic 
displacement potential Φ given by [2] 
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where 
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Denoting Poisson's ratio by ν and the coefficient of linear thermal expansion by 
α, m0 is given by m0=(1+ν)α/(1-ν). Now, let us introduce the high-order function 

fφ  defined by 
 

    ff φφ =∇ +1
2                                                 (26) 

 
Then, using Eqs.(5), (6) and (8) and Green's theorem two times, Eq.(24) can be 
written as 
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where 
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In the infinite space, the displacement iu  and stress ijσ  are obtained by 
[8] 
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where G is the shearing modulus. 
     Using the relationship between the thermoelastic displacement potential and 
the displacement, the boundary integral representation for the displacement is 
obtained as [2, 8] 
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In Eqs.(33) and (34), r,i=∂r/∂xi and ni is the unit normal component. Using 
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The boundary integral representation of stresses in the domain is given by  
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Using Eq.(27) and (31), functions )( f

ijσ , nf
ij ∂∂ )(σ  and Af
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)(σ  in Eq.(39) are 

given by 
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(a) Boundary elements                    (b) Internal points 

Figure 3: Cylinder with heat generation (quarter-region). 

 

Figure 4: Temperature distribution on cylinder. 

3 Numerical examples 

In order to ensure the accuracy of the present method, the thermal stresses in a 
circular cylinder, the inner and the outer radius of which are a and b as shown in 
Fig.3, are obtained under heat generation:  
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where r is the radial coordinate and a=10 mm and b=30 mm. The internal and 
outer pressures are  zero. Moreover, W0/λ=1 °Cmm-2 is assumed. The two-
dimensional state, in which there is no heat flow in the z direction, is assumed. 
The upper and lower surfaces of the cylinder are restricted in the z-direction. The 
temperature at r=a and b is 0 ℃ .  Young's modulus E, Poisson's ratio ν  and the 
coefficient of linear thermal expansion α are assumed to be 210 GPa, 0.3 and 
11×10-6 K-1, respectively. The number of discretized constant boundary element 
is 680, and the internal points is 45, as shown in Fig.3(a) and (b). The 
temperature distribution is given in Fig.4, where the solid lines show the exact 
solutions. Figure 5 shows the radial and circumferential thermal stress 
distributions with an exact solution. Radius Ai of spherical region in Eq. (12) at 
internal points pi is obtained by 
 

2
)],([min ,..,2,1 jiMj

i
qpr

A ==                                     (47) 

 
where r(pi,qj) is the distance between the internal points pi and qi for 
interpolation. 
  

Figure 5: Stress distribution on cylinder. 

 
Next, the thermal stresses in a cube, of length L=10 mm, as shown in Fig.6, 

are obtained with the heat generation.  
 

   )exp(0 xWW µ−=                                             (48) 
 

The temperature at x=0 is 0°C，and is adiabatic at y=0, z=0, y=10, z=10 and 
x=10. 
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(a) Boundary elements                          (b) Internal points 

Figure 6: Cube with heat generation. 

Figure 7: Interpolation of heat generation. 

 
Figure 8: Stress distribution on in cube cube (σyy). 
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     The surfaces at x=0mm and x=10mm are free, and the displacements of 
surfaces at y=z=0mm and y=z=10 mm are 0. Heat generation W０/λ=1 ℃mm-2 is 
assumed. The number of discretized constant boundary element is 600, and the 
internal points for interpolation is 64, as shown in Fig.6(a) and (b). The other 
conditions are the same as in Fig.3. Figure 7 shows comparison with the 
interpolated value and given distributions of heat generations at µ =0.05, 0.2 and 
0.5 mm-1. Figure 8 shows thermal stress distribution (σyy) at y=z=5 mm. 

4 Conclusion 

It has been shown that it is possible to express the distributions of heat 
generation using integral equations. It has also been shown that steady thermal 
stress analysis of higher accuracy using the boundary integral is possible by the 
triple-reciprocity BEM even in the case of arbitrary distributions of heat 
generation. Accordingly, solely by adding the data of the values at internal points 
and on the boundary for the distributions of heat generation, the analysis of 
steady thermal stress with heat generation has become possible using only few 
data values. In the presented formulation, the thermoelastic displace potential is 
very effective method. 
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