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Abstract

This paper is a study of two approaches to obtain very high accuracy in time-
dependent parabolic partial differential equations (PDEs) with the use of the C∞

multiquadric (MQ) radial basis functions (RBFs). For the spatial part of the solu-
tion, the MQ-RBF is generalized having the form, φj(x) = {(x-xj)2 +c2

j}β and
β > −1/2 can be either a half integer, or any number, excluding a whole integer.
The other shape parameter, c2

j , is allowed to be different on the boundary and the
interior, and is permitted to vary with odd and even values of the index, j. The tem-
poral and spatial variations of the solution, U(x,t) are treated by the separation of
variables in which the temporal portion is accounted by the expansion coefficients
and the spatial portion is accounted by the MQ-RBFs. It was observed that the PDE
on the interior is really a system of time dependent ordinary differential equations
(ODEs) with either stationary or non-stationary constraints on the boundary. The
solution of the time advanced expansion coefficients both on the interior and on
the boundary can be accomplished by analytical methods, rather than by low order
time advanced schemes.

1 Introduction

The interest in mesh-free methods to solve PDEs has grown considerably in the
past 15 years. The two principal reasons are: (1) Mesh generation over complicated
two and three dimension domains may require weeks or months to produce a well
behaved mesh, and (2) The convergence rate of traditional methods are typically
second order in space and time. The mesh-free radial basis functions (RBFs) have
been shown to be particularly attractive by Fedoseyev et al. [1], and Cheng et
al. [2] because of the exponential convergence of certain C∞ RBFs that has been
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observed. One of the most used RBFs is the multiquadric RBF. The generalized
MQ basis function, φj(x), where x ∈ �d is given by

φj(x) = [(x − xj)2 + c2
j ]

β . (1)

Commonly used values for β are -1/2 and 1/2. Madych and Nelson [3] and
Madych [4] have proven theoretically that MQ interpolation converges exponen-
tially as η(c/h) where η < 1, and h = max|(xi−xj)|. For any continuous function,
U(x), over the domain, Ω, can be expanded as

U(x)=
N∑

j=1

φj(x)αj +
M∑

k=1

pk(x)γk (2)

where pk(x) is a polynomial of degree k,and the expansion is subject to the con-
straint conditions:

N∑
j=1

pk(x)αj = 0 (3)

Hyperbolic, parabolic, or elliptic partial differential equations (PDEs) can be
solved by an analogy to the interpolation problem, see [5]. Given the operators L
on the interior, Ω\∂Ω, and the boundary condition operator, ß, on the boundary,
∂Ω, where ß may represent a Dirichlet, Neumann, or Robin operator, the PDE
problem is formulated as:

LU =
N∑

j=1

Lφj (x)αj +
M∑

k=1

Lpk(x)γk = f on Ω\∂Ω, (4)

ßU =
N∑

j=1

ßφj(x)αj +
M∑

k=1

ßpk(x)γk=g on ∂Ω, (5)

subject to the constraints

N∑
j=1

Lpk(x)αj = 0, and (6)

N∑
j=1

ßpk(x)αj = 0. (7)

When U(x), given by Eq(2), is inserted into Eqs (4-7), a system of linear or non-
linear equations is obtained, and we can obtain the expansion coefficients, [α, γ]T

to recover the expansion of U(x) by Eq(2). Because the asymmetric collocation
method is based upon interpolation, an acceptable degree of convergence can be
achieved either by increasing c2

j or decreasing h; however the price is usually the
ill-conditioning problem resulting from the use of Gaussian elimination methods
to find the expansion coefficients.
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Standard low order finite difference, element and volume methods give rise to
banded system of equations whose bandwidth increases with the number of dimen-
sions. Since the convergence is typically second order, the system of equations
requires a larger number, N, of discretization sites, and the resulting system of
equations is very ill-conditioned. Hence, special methods such as domain decom-
position and specialized preconditioners are used. Because 5-8 orders of magni-
tude of equations need to be solved, only those organizations that have access to
super computers can attempt to solve large scale problems. The viable alternative
investigate how RBFs may achieve accelerated convergence, so orders of magni-
tude of courser discretization may be used.

Although many papers have shown MQ to be a powerful tool, there is no widely
accepted theory or recipe for choosing the optimal shape parameters for vari-
ous applications. This problem has been investigated by several authors such as
Hardy [6], Foley [7], Carlson and Foley [8], Kansa and Carlson [9], Golberg et al.
[10], Rippa [11], and Kansa and Hon [12].

Bengt Fornberg and co-workers [13,14,15,16] have written a series of papers
investigating the convergence rates of C∞ RBFs such as the Gaussian and MQ
RBFs in the limit of infinitely flat basis functions. They have shown extraordi-
nary convergence rates of these basis functions for both interpolation and PDE
problems, and have found these RBFs have removable singularities in the complex
plane with polynomial limit behavior.

Wang and Liu [17] , Xiao and McCarthy [18] and Xiao et al. [19] expanded the
definition of the MQ shape parameter to include not only c2 ,but the MQ exponent,
β, as an additional parameter to be optimized.

Recently, Ling and Kansa [20, 21] and Brown et al. [22] showed that an approx-
imate least squares cardinal function (LSCF) preconditioner can be constructed
that transforms an ill-conditioned system of equations arising from PDE systems
using RBFs into a well conditioned system such that the unknown expansion coef-
ficients could be found by GMRES iterations. The authors solved problems in �2

and found empirically that the constant, c = k/
√

N,where N is the total number
of points, and k may safely range up to 5. Furthermore, they found, with increas-
ing numbers of subdomains, that the additive Schwarz algorithm not only reduces
the operation count, but increases the convergence rate. Most recently, Ling and
Hon [23] developed an affine space decomposition scheme for solving linear equa-
tions that is extremely stable, because the small eigenvalue components are pro-
jected away. This has proven to be stable even for a full system of equations having
a rank of over 1000. When combined with domain decomposition, this tool should
be extremely useful for simulating very large complex systems of PDEs.

2 The role of shape parameters

This paper builds upon several observations. The first is the observation of
Fedoseyev et al. [1] that a PDE exists not only on the domain, Ω, but also slightly
beyond its boundary, ∂Ω. A boundary can be interpreted as a constraint condition
upon the PDEs at specific locus. So interior points may not only coincide with
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Figure 1: An illustration of three MQ basis functions with β = 0.5 , 3.5 and 6.5
over [-1,1].

boundary points, but extended slightly beyond ∂Ω.
Consider the generalized MQ basis function in a hyperplane in �d , given by

Eq(1). The term, {(x-xj )2+c2
j,}, is the squared Euclidian metric distance in the

space, �d+1. Then, cj , can be interpreted as a distance in the (d+1)th dimension.
The optimal solution on the hyperplane in �d will depend upon the distance in the
direction normal to the hyperplane. We seek to find the minimum potential energy
for this distribution.

Hence, we postulate that the squared distance should be raised to the power, β,
that will be found by optimization. Figure 1 shows the plots of two basis functions
each with c2=0.01, but with the exponent β=1/2 and 7/2 centered at x=0. Notice
the β=1/2 basis function is a rounded conic shape rising linearly away from the
data center, but the β=7/2 and 13/2 RBFs are flattened near x=0, and rises very
rapidly near x = ±1. For large distances away from the data center, the asymp-
totic forms behave as the polynomials x, x7 and x13, respectively. When solving
partial differential equations, it is important to remember that spatial differentia-
tion of the basis function reduces the order of the basis function, irrespective of
the dimensionality of the space. Asymptotically, φj (x)={x2+c2}β → x2β , φ′

j (x)
→ x2β−1,φ′′

j (x) → x2β−2, etc., where the number of primes indicate the order of
differentiation. If we wish to approximate ∇2U by at least a quadratic function,
and if β ≥ 7/2, then ∇2φj(x) will be at least quadratic.
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Because there can be an infinite number of solutions to Eq(4), the boundary con-
ditions, Eq(5), force the solution to be unique. Since the boundary conditions have
such an important influence upon the solution over the entire domain, we allow the
c2
j distances to be different and possibly much larger than those associated with the

interior problem, especially when Dirichlet conditions are applied. A large value
of c2

j also makes the MQ basis function locally flatter. It was observed in [5] that
a variable c2

j distribution based upon a power law distribution performs optimally
for strictly monotonic increasing or decreasing functions. In [12], it was hypothe-
sized that the c2

j distribution may be related to the local radius of curvature, it was
not seriously considered because of the computational effort to calculate the local
radius of curvature.

The optimization of the MQ shape parameters was studied on two Poisson prob-
lems: The first is

∇2U = 8e2x+2y , (8)

on a domain, Ω, represented by a unit square with Dirichlet boundary conditions
on all four sides. The exact solution is U=e2x+2y . The second is

∇2U = -8π2cos(2π{x+y}), (9)

on a domain, Ω, represented by a unit square, with Dirichlet boundary conditions
on all four sides. Its exact solution is U= cos(2π{x+y}).

Figure 2: A typical distribution of a optimized distribution of oscillating c2
Ω\∂Ω

<< c2
∂Ω (not to scale).
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Figure 3: RMS errors for cos(2π[x+y]) problem using the optimized β(N) for opti-
mized constant c2 and optimized variable c2

Ω\∂Ω<<c2
∂Ω as the number

of data centers vary.

It was discovered by trial and error that a simple distribution of a variable c2
j

for both the cos(2π[x+y]) and the exp(2[x+y]) problems could be obtained that
dramatically reduced the RMS errors by using the following expression:

c2
j=const1*[1 +const2(-1)j ], (10)

where const1= the optimal constant c2(N) for the interior or boundary and 0.25
≤ const2 ≤ 0.65. The parameter, const2, determines the amplitude of the oscilla-
tions of const1 as the index, j, varies from even and odd values. For both Poisson
problems tested, it was observed that if c2(N)Ω\∂Ω << c2(N)∂Ω the RMS errors
dropped very fast with increasing N.

Figure 2 shows the variation of (c2
j )Ω\∂Ω (solid line) and (c2

j )∂Ω (dotted line),
not to scale, for typical solutions of the two Poisson equations. The solid line is
that of (c2

j )Ω\∂Ω with the alternating values for even and odd numbered index, j.
The dotted line is the distribution of (c2

j )∂Ω with the alternating values for even
and odd numbered index, j. For most problems tested, a recommended value of
(const2 )∂Ω lies in the interval 0.49 ≤ (const2 )∂Ω ≤ 0.55, and the recommended
value of (const2 )Ω\∂Ω lies in the interval, 0.25 ≤ (const2 )Ω\∂Ω ≤ 0.33.

Figure 3 shows the results of an optimization search for the best values of c2
j

using const1=c2(N)∂Ω and const2 (dashed line) and the recalculated uniform c2(N)
(solid line) for the cos(2π[x+y]) problem. Note that by simply allowing the set of
c2
j to oscillate as well as be distinct on the boundary and interior has reduced the

RMS errors by 3 orders of magnitude as N becomes increasingly larger.
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Figure 4: The RMS errors versus N for the exp(2[x+y]) problem with constant c2

over Ω (solid line) and variable c2
j (dashed line).

Figure 4 shows a similar trend with the exponential elliptic problem that if
(c2

j )Ω\∂Ω<< (c2
j )∂Ω and if the c2

j oscillate for odd and even index numbers, we
obtain a dramatic reduction of RMS errors as the number of data centers,
N increases.

3 High order time integration methods for parabolic partial
differential equations

For diffusion parabolic PDEs, the operator L has the form:

L =
∂

∂t
-∇ · (κ(x)∇), (11)

where κ(x) represents a diffusion coefficient that may have a spatial dependency.
From the initial conditions, one can find the initial set of expansion coefficients

by solving
Gχ(0) = U(x,0), where χ =[α,γ]T . (12)

For time dependent PDEs, assume separation of variables such that the expan-
sion coefficients, χ = χ(t), are only functions of time and the RBFs are only func-
tions of space. It is convenient to reorder all the points, {xj}, such that the first ni

points are associated with Ω\∂Ω, and the remaining nb points are associated with
∂Ω. This arrangement gives a convenient structure to the system of equations.
Because the system of equations associated with ∂U

∂t on Ω\∂Ω has the spatial por-
tion related to the interpolation matrix, G, but with a zero block matrix for those
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points associated with the boundaries,
GΩ\∂Ω

0∂Ω

. Likewise, the spatial part of the

parabolic PDE is a block matrix

Hχ = ∇ · (κ(x)∇)Gχ = f on Ω\∂Ω (13)

which has a similar structure to the G matrix,
HΩ\∂Ω

0∂Ω

. The boundary conditions

on ∂Ω,
ßGχ = g on ∂Ω (14)

have the following structure,
0Ω\∂Ω

H∂Ω

.

We can then express the time dependent PDE as a system of ni ordinary differ-
ential equations in time plus nb boundary constraint conditions as:(

Gi,i Gi,b

0 0

)[
dχi

dt
dχb

dt

]
−
(

Hi,i Hi,b

Hb,i Hb,b

)[
χi

χb

]
=

[
f

g

]
(15)

Notice that there no entries for the lower blocks of G since the boundary con-
straints are assumed to be constant in time.

Operating first on the rows of the boundary coefficients, χb, one obtains

H−1
b,b Hb,i χi + Ib,bχb=H−1

b,b g (16)

With this relation, one can eliminate the block matrix, Hi,bso the transformed H
matrix is now in lower block form. Differentiating with time, and substituting dχb

dt
we eliminate this term from the derivative of the time expansions, yielding:

(Gi,i-Gi,bH−1
b,b Hb,i )

dχi

dt
-(Hi,i-Hi,bH−1

b,b Hb,i )χi =(f-Hi,bH−1
b,b g) (17)

After obtaining the inverse of the matrix, (Gi,i-Gi,bH−1
b,b Hb,i ), this equation has

the form:
dχi

dt
-Λχi =ξ (18)

The solution of this set of ordinary differential equations over Ω\∂Ω has the
form:

χi(t)= exp(-tΛ)χi(0) +Λ−1ξ (19)

where the exponential of a matrix is obtained by the Taylor series expansion, given
by

exp(-tΛ) = I +
(-tΛ)

1!
+

(-tΛ)2

2!
+

(-tΛ)3

3!
+... (20)

Once χi(t) is obtained, then the updated set of expansion coefficients for the
boundary, χb is readily obtained. Second order time dependent wave equations can
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Figure 5: RMS errors for the time dependent two dimensional diffusion equation
with the analytic integration method.

be solved by similar techniques. The time dependent solution will be sinusoidal for
the expansion coefficients. The time dependent PDE problem over Ω\∂Ω is cast
into the method of lines with a set of nb boundary constraint conditions over ∂Ω .

This time integration approach was tested using the following two dimensional
problem diffusion equation with κ(x) =1 :

∂U
∂t

- ∇2U = 0. (21)

An exact solution of the above problem is:

U(x,y,t)= e−t2π2
sin (πx) sin(πy) over Ω =[0,1] × [0,1] (22)

with Dirichlet boundary conditions on all sides of ∂Ω, and the initial conditions,
U(x,y,0).

The initial value problem was optimized for the best β and c2
j distributions on

the boundary and interior. There were 137 total points, with 100 random points in
Ω\∂Ω, and 37 on ∂Ω. The time step was chosen to be a constant ∆t = 1·10−5.
Once exp(-∆tΛ) was formed, it was stored, and use to update χ(t).

Figure 5 shows the decrease of RMS errors for the test parabolic PDE problem.
The initial value problem was interpolated onto a uniform 33x33 mesh and the
RMS errors for the initial value were found to be 1.4·10−4 for this problem with
the chosen input parameters. For most applications, a problem with only 137 data
centers can be consider to be a sparse problem. Because the exact solution is a
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decaying exponential in time, the numerical solution, U, decays rapidly in time ,
and likewise do the RMS errors as shown above.

4 Discussion

The objective of this study was to obtain the optimal numerical solution with a
rather coarse discretization, rather than solving a problem with millions of dis-
cretization points that must be solved on massively supercomputers. This study
shows the MQ-RBF can perform very well if modifications to the accepted MQ-
RBF is undertaken. First, the exponent ,β should be a non-integer, and preferably
above 5/2.

Second, it was observed that the (c2
j )Ω\∂Ω < < (c2

j )∂Ω, and third, the c2
j should

oscillate with the index, j with an average of about 1/2 about the mean. The study
of the parameters is found in a recent paper by Wertz et al. [24]. It is also rec-
ommended that instead of using Gaussian elimination methods, the affine space
decomposition method of Ling and Hon [23] . Finally, time dependent parabolic
equations can be solved by analytic ordinary differential equation methods for high
order accuracy.

References

[1] Fedoseyev A. I., M. J. Friedman, and E. J. Kansa, “Improved multiquadric
method for elliptic partial differential equations via PDE collocation on the
boundary”, Comput. Math. Applic., 43 (3-5): 491-500 (2002).

[2] Cheng A. H. D., M. A. Golberg, E. J. Kansa and T. Zammito, “Exponential
convergence and h-c multiquadric collocation method for partial differential
equations” , Num. Meth. PDEs., 19 :571-594 (2003).

[3] Madych W. R. and S. A. Nelson, Multivariate interpolation and conditionally
positive definite functions. Approx. Theory and Its Appl., 4, 77-89, (1988).

[4] Madych W. R., Miscellaneous error bounds for multiquadric and related
interpolators. Comput. Math. Applic., 24, 121-138, (1992).

[5] Kansa E. J. ”Multiquadrics- A scattered data approximation scheme with
applications to computational fluid dynamics: II. Solutions to parabolic,
hyperbolic, and elliptic partial differential equations”, Comput. Math. Appl.,
19 (6-8): 147-161 (1990).

[6] Hardy R. L. Multiquadric equations of topography and other irregular sur-
faces. J. Geophys. Res., 76:1905-1915 (1971).

[7] Foley T. A. Interpolation and approximation of 3-D and 4-D scattered data.
Comp. Math. Applic., 13: 711-740.(1987).

[8] Carlson R. E. and T.A. Foley, The parameter R2 in multiquadric interpolation.
Comp. Math. Applic., 21: 29-42 (1991).

[9] Kansa E. J. and R. E. Carlson, Improved accuracy of multiquadric interpola-
tion using variable shape parameters, Comput. Math. Appl., 24, (12): 99-120
(1992).

14  Boundary Elements XXVII

© 2005 WIT Press WIT Transactions on Modelling and Simulation, Vol 39,
 www.witpress.com, ISSN 1743-355X (on-line) 



[10] Golberg M. A., C. S. Chen and S. R. Karur, Improved multiquadric approx-
imation for partial differential equations. Eng. Anal. Bound. Elem., 18: 9-17
(1996).

[11] Rippa S., An algorithm for selecting a good value for the parameter c in radial
basis functions interpolation, Adv. Comp. Math.,11:193-210 (1999).

[12] Kansa E. J. and Y. C. Hon, Circumventing the ill-conditioning problem with
multiquadric radial basis functions: Applications to elliptic partial differential
equations. Comput. Math. Appl., 39 (7/8): 123-137. (2000).

[13] Driscoll T. A. and B. Fornberg, Interpolation in the limit of increasingly flat
radial basis functions , Comput. Math. Appl., 43: 413-422, (2002).

[14] Fornberg B., G. Wright and E. Larsson, A numerical study of some radial
basis function based solution methods for elliptic PDEs (E. Larsson and BF),
Comput. Math. Appl., 46: 891-902(2003).

[15] Fornberg B., G. Wright and E. Larsson, Some observations regarding inter-
polants in the limit of flat radial basis functions, Comput. Math. Appl., 47:
37-55 (2004).

[16] Larsson E. and B. Fornberg, Theoretical and computational aspects of mul-
tivariate interpolation with increasingly flat radial basis functions Comput.
Math. Appl. ( To appear )

[17] Wang J. G. and G. R. Liu, On the optimal shape parameters of radial basis
functions used for 2-D meshless methods. Comput. Meth. Appl. Mech. Eng.,
191: 2611-2630 (2002).

[18] Xiao J. R. and M. A. McCarthy . A local Heaviside weighted meshless
method for two-dimensional solids using radial basis functions. Computat.
Mech., 31: 301-315 (2003).

[19] Xiao J. R., B. A. Gama, J. W. Gillespie Jr and E. J. Kansa,Meshless solu-
tions of 2D contact problems by subdomain variational inequality and MLPG
method with radial basis functions, Eng. Anal. Bndy. Elem. (submitted,2004).

[20] Ling L. and E. J. Kansa, A Least Squares Preconditioner for Radial Basis
Functions Collocation Methods. Adv. Comput. Math. PIPS No: 5271809
(2004).

[21] Ling, L. and E. J. Kansa, “Preconditioning for radial basis functions with
domain decomposition”, Comput. Math. Applic. (to appear).

[22] Brown D., L. Ling, E. Kansa, and J. Levesley. “On approximate cardinal
preconditioning methods for radial functions”, Eng. Anal. Bndy. Elem. (to
appear).

[23] Ling L. and Y. C. Hon, Improved numerical solver for Kansa’s method based
on affine space decomposition, Eng. Anal. Bndy. Elem. (submitted, 2004).

[24] Wertz J. E., J. Kansa and L. Ling, The role of the Multiquadric Shape Param-
eters in solving Elliptic Partial Differential Equations, Comput. Math. Appl.
(submitted ).

Boundary Elements XXVII  15

© 2005 WIT Press WIT Transactions on Modelling and Simulation, Vol 39,
 www.witpress.com, ISSN 1743-355X (on-line) 




