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Abstract 

The Laplace transform has been shown to be well-suited to the solution of 
diffusion problems and provides an alternative to the finite difference method.  
Such problems, parabolic in time, are transformed to elliptic problems in the 
space variables.  Any suitable solver may be used in the space domain and a 
numerical inversion of the transform is then performed.  For parabolic problems 
the Stehfest numerical method has been shown to be accurate, robust and easy to 
implement.  The boundary element method has been used by a variety of authors 
to solve the resulting elliptic problem.  The initial conditions lead to a non-
homogenous Helmholtz-type problem which may be solved using the dual 
reciprocity method.  Time-dependent boundary conditions are, in principle, 
easily implemented.  However, problems can occur if the conditions are not 
monotonic in time.  The authors have already considered problems with a 
discontinuity in the boundary condition and have shown that the Laplace 
transform can be used to find the solution up to the discontinuity and then, using 
the computed solution as a new initial condition, to proceed past the continuity.  
Similarly, for boundary conditions with period 2T , the Laplace transform is 
used in time intervals of length 1

2 T , where the boundary condition is monotonic, 

and the computed solution at time 1
2 T  is used to move on to the next monotonic 

phase. 
Keywords: boundary element method, Laplace transform, periodic boundary 
condition, dual reciprocity method. 
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1 Introduction 

In the numerical solution of parabolic problems the most common approach to 
the solution is to use a finite difference time-stepping process.  At each time step 
a solution of an elliptic problem is required and the boundary element method 
provides a suitable approach.  A variety of schemes has been produced, Honnor 
et al. [1] describe a generalised approach in which all the ‘usual’ methods may 
be recovered as special cases.  A problem that occurs with time-stepping 
processes is that there may be severe stability restrictions.  An alternative 
approach is to use the Laplace transform in time.  Rizzo and Shippey [2] first 
used the Laplace transform in conjunction with the boundary integral equation 
method using an inversion process in terms of a Prony series of negative 
exponentials in time.  Stefhest’s method, which is much simpler to apply, was 
first used by Moridis and Reddell [3].  Provided that the boundary conditions are 
monotonic in time, the solution is developed directly at one specific time value 
without the necessity of intermediate values.  If the solution is required at one 
particular time only then the current approach is particularly useful since just one 
application of the Laplace transform boundary element method is needed giving 
a significant saving in computational effort.  In sections we shall show that even 
if the boundary conditions are not monotonic then a piecewise application still 
yields a significant saving in computational effort.  If the time history is required 
then the solution may be developed at any set specified times.  Once a numerical 
solution of the elliptic problem has been effected then Stehfest’s method [4, 5] 
provides a numerical Laplace transform inversion which is simple to use, 
provides accurate results and is recommended by Davies and Martin [6] in their 
study of a variety of numerical Laplace transform inversion methods. 

2 The Laplace transform method for diffusion problems 

Consider the initial boundary-value problem defined in the two-dimensional 
region Ω bounded by the closed curve 1 2Γ = Γ +Γ  
 

 2 1 inuu D
t

∂
α ∂

∇ =  (1) 

 
subject to the boundary conditions 
 

 ( )1 1,  on u u s t= Γ  (2) 

 ( )2 2,  on uq q s t
n

∂
∂

≡ = Γ  (3) 

 
and the initial condition 
 

 ( ) ( )0, ,0 ,u x y u x y= . (4) 
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     We now define the Laplace transform in time by 
 

 ( ) ( )
0

; , tu x u x t e dtλλ
∞

−= ∫  (5) 

 
so that the initial boundary-value problem (1), (2), (3) and (4) becomes 
 

 ( )2
0

1 inu u uλ
α

∇ = − Ω  (6) 

 
subject to 
 

 ( )1 1;  onu u s λ= Γ  (7) 

 ( )2 2;  on .q q s λ= Γ  (8) 
 

     In the case 0 0u ≡  equation (6) becomes homogeneous.  Similarly if 0u  is 
harmonic in Ω  we can make a change in the dependent variable to obtain a 
homogeneous equation.  In both cases the resulting elliptic equation (6) may be 
solved by a variety of methods, e.g. Davies et al. [7] use finite elements, finite 
differences, fundamental solutions and boundary elements.  We shall restrict 
ourselves to the boundary element method for which a suitable fundamental 
solution is  
 

 0
1*

2
u K Rλ

π α

 
=   

 
 (9) 

 

where R is the distance from the source point to the field point ( ),x y .  iK  is the 
modified Bessel function of the second kind.  This has been applied successfully 
by a variety of authors [8, 9].  In her investigation of the suitability of the 
Laplace transform for diffusion-type problems, Crann [10] showed that 
difficulties can occur with the numerical inversion if the functions involved are 
not monotonic in the time variable.  In particular she considers a problem with a 
shock discontinuity in the boundary condition [11, 13] showing that the 
difficulty is associated with the recovery of the discontinuity since this is 
smoothed out by the Laplace transform process.  However, if the solution is 
found up to the discontinuity then this solution can be used as an initial condition 
for the post-shock solution.  For diffusion problems Williams [12] shows that 
oscillatory solutions exist only if the boundary conditions or an internal source 
functions are oscillatory.  Crann and Davies [13] have shown, using finite 
differences for the elliptic problem, that such solutions can be recovered if the 
Laplace transform is applied in a piecewise manner, tracking oscillations 
between successive regions of monotonicity.  We shall use the same approach 
using the boundary element method for the elliptic problem.  However, the 
resulting equation (6) is no longer homogeneous and we must use a suitable 
approach to handle the non-homogeneity.  The dual reciprocity method [14] 
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allows us to do this and at the same time use the simpler Laplacian fundamental 
solution 

 ( )1* ln
2

u R
π

= −  (10) 

3 The dual reciprocity method 

It is very simple to add a reaction term, ( ), ,F x y t , in equation (1) which leads to 

an extra term of the form ( ), ;F x y λ  in equation (6) which, using the 
fundamental solution (10), we can write as  
 

 ( )2 , , ;   in u b x y u λ∇ = Ω  (11) 
 
subject to the same boundary conditions (7) and (8). 
     By using the fundamental solution (10) and Green’s theorem, equation (11) 
can be written in the integral form 
 

 * * * 0i i i i ic u q u d u q d b u d
Γ Γ Ω

+ Γ − Γ + Ω =∫ ∫ ∫  (12) 

 
      In the dual reciprocity method we approximate the right-hand side of 
equation (11) in terms of a linear combination of radial basis functions, ( )jf R , 
in the form 
 

 ( )
1

M

i j j i
j

b f Rα
=

= ∑  (13) 
 

where ib  is the value of the function b at node i.  The collocation is performed at 
the M N L= +  nodes, where N and L are the numbers of boundary and internal 
nodes respectively. 
     The functions ( )jf R  are chosen so that we can find a particular solution, û , 

with the property 2 ˆ
j ju f∇ = . 

     Using these values in equation (12) and using Green’s theorem we obtain the 
boundary integral form 
 

 {
1

ˆ ˆ ˆ* * * *
N

i i i i j i ij j j
j

c u q u d u q d c u q u d u q dα
=Γ Γ Γ Γ

 
+ Γ − Γ = + Γ − Γ 

 
∑∫ ∫ ∫ ∫  (14) 

 
     Internal values are given by 
 

 {
1

ˆ ˆ ˆ* * * *
L

i i i i j i ij j j
j

c u q u d u q d c u q u d u q dα
=Γ Γ Γ Γ

 
= − Γ + Γ + + Γ − Γ 

 
∑∫ ∫ ∫ ∫  (15) 
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     Combining equations (14) and (15) and collocating at the M points yields the 

overall set of equations 
 

 1ˆˆ − − = −  
HU GQ HU GQ F b  (16) 

 
where the matrix F  is the collocation matrix from equation (13) written in the 
form =b Fα . 
     The solution of equation (16) yields the approximate transforms  and U Q  
which may then be inverted to obtain the approximate solutions  and U Q . 
     To implement the Stehfest we proceed as follows: 
Choose a specific time value, τ, at which we seek the solution and define a 
discrete set of transform parameters given by 
 

 ln 2 : 1, 2,..., ;   evenj j j m mλ
τ

 = = 
 

. (17) 

 

     The boundary element method is applied to equation (13) for each jλ  to 
obtain a set of approximate boundary values 
 

 , 1,..., ; 1,...,ijU i N j m= =  
 
and a set of approximate internal values 
 

 , 1,..., ; 1,...,I
kjU k L j m= = . 

 
     The inverse transforms are then given as follows: 
 

 
1

ln 2 M

r j rj
j

U w U
τ =

= ∑  (18) 

and 
1

ln 2 M
I I
r j rj

j

U w U
τ =

= ∑  (19) 

 
where 1...r N=  for boundary points and 1...r L=  for internal points. 
     The weights, jw , are given by Stehfest [4, 5] as 
 

 ( ) ( )
( ) ( ) ( ) ( )[ ]

( ) 22
2

1
2

min ,

1 2

2 !
1

! ! 1 ! ! 2 !

mm
m

j
j

j m
k j

k k
w

k k k j k k j
+

= +

= −
− − − −∑ . (20) 
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4 Periodic boundary conditions 

Suppose that the time-dependent boundary conditions (2) and (3) are periodic, 
e.g. ( ) ( )1 1, ,u s t T u s t+ =  and ( ) ( )2 2, ,q s t T q s t+ = , we apply the Laplace 

transform piecewise in time and seek solutions, ( ) ( ),iu x y  in the intervals 
1
4i it t t T≤ ≤ + , 1,2,...i =  as follows: 

     Solve  
 

 ( )
( )

( )2 1
4

1 , , in ,  
i

i
i i

uu F x y t D t t t T
t

∂
α ∂

∇ = + ≤ ≤ +  (21) 

 
subject to the boundary conditions 
 

 ( ) ( ) ( ) ( )1 1 2 2,  on  and ,  on i iu u s t q q s t= Γ = Γ  (22) 
 
and the initial condition 
 

 ( ) ( ) ( ) ( )1 1
4, ,0 , ,i i

iu x y u x y t T−= +  (23) 
 
      We effect the Laplace transform solution by making the change of variable 

1
4t Tτ= +  and so the problem is now defined in 1

40 Tτ≤ ≤ . 

5 Results 

The two examples in this section are defined in the unit square 
( ){ }, : 0 1,  0 1x y x y< < < <  using 32N =  boundary points and 9L =  internal 

points.  Also, in the dual reciprocity method, we use thin plate splines, 2 lnR R , 
augmented with a linear term a bx cy+ + , for the basis functions in equation 
(13).  For the numerical Laplace transform we use the Stehfest parameter value 

8m = . 
 
Example 1 
 
In this problem 1α =  and the non-homogeneous term is given by 
( ) ( ), , 2 sin 1 cosF x y t x t xy y t= − − − . 

     The boundary conditions are given by 
1 on 0,  0 and 1u x y y= = = = ; ( )1 1 sin  on 1u y y t x= + − =  

and the initial condition is 
( ), ,0 1u x y = . 

     We see that the boundary conditions have period 2π . 
     The analytic solution is given by ( ) ( ), , 1 1 sinu x y t xy y t= + − . 
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     In Figure 1 we show the time development of the approximate solution, 
( )rU t , and the analytic solution, ( ), ,u x y t , at the point ( )0.25,0.25  plotted 

over the interval 5
20 t π≤ ≤ . 
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analytic approx

 

Figure 1: Time development of the solution at ( )0.25,0.25  for 5
20 t π≤ ≤ . 

 
     We notice that, in the first period, the approximate solution tracks the analytic 
solution very well; the largest errors are found for values of t close to 

31
2 2 and t tπ π= =  and these errors are less than 1%.  We also notice that the 

approximate solution is clearly exhibiting the correct periodic behaviour, 
tracking the analytic solution very well in the second period.  Clearly, we can 
now predict approximate future values using the periodicity relationship 

( ) ( )2r rU t U t nπ= −  when ( )2 2 1n t nπ π≤ ≤ + . 
     The solution in this example does not exhibit a transient part, the initial and 
boundary conditions are such that the system is configured in the steady-state at 
time 0t = .  In the following example we consider a problem whose solution 
exhibits a transient term. 
 
Example 2 
 
In this problem 0.2α =  and the non-homogeneous term is given by 
( ) ( ), , cosF x y t x tπ

α π= − . 
     The boundary conditions are given by 

0 on 0;  0 on 0 and 1u x q y y= = = = = ; ( )sin  on 1u t xπ= =  
and the initial condition is 
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( ) ( ), ,0 sinu x y xπ= . 
     We see that the boundary conditions have period 2 . 
     The analytic solution is given by ( ) ( ) ( ) ( )2, , exp sin sinu x y t t x x tαπ π π= − + . 
     In Figure 2 we show the time development of the approximate solution, 

( )rU t , and the analytic solution, ( ), ,u x y t , at the point ( )0.25,0.25  plotted 

over 1
23  periods, i.e. over the interval 0 7t≤ ≤ . 

     We notice that the solution tracks the transient part very well and is in good 
general agreement with the steady-state term.  The numerical solution suggests 
that the transient term has disappeared by 3t = .  In fact in the analytic solution 
the transient term has a magnitude of the order of 0.002 at 3t =  i.e. smaller than 
the steady-state term by a factor of about 100.  The largest errors are at the points 
corresponding to maximum values of u  and these predict the steady-state 
amplitude to have an error of the order of approximately 10%. 
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analytic approx

 

Figure 2: Time development of the solution at ( )0.25,0.25  for 0 7t≤ ≤ . 

6 Conclusions 

The numerical Laplace transform method in time together with the boundary 
element method in space offers an excellent approach to the solution process for 
diffusion-type problems.  Stehfest’s method provides a numerical inversion 
process which is both accurate and easy to implement and does not suffer from 
potential stability problems which occur with finite difference methods.  
However, if the boundary conditions are periodic then the Laplace transform can 
not be applied directly since Stehfest’s numerical inversion technique is unable 
to cope with the oscillatory nature of the underlying solution.  By applying the 
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process in a piecewise manner in regions of width 1
2 T , where the period is 2T , 

we ensure that the process is applied only over regions where the boundary 
conditions are monotonic. 
     An interesting observation is that we must use the process in a piecewise 
manner of intervals of width one-quarter period.  We might expect that we 
should need only consider intervals of width one-half period.  Our numerical 
experiments [13] show that this is not the case. 
     There has been little work done to explain the behaviour of the errors in 
Stehfest’s method.  More information on the analysis of the Laplace transform 
inversion errors may enable to attempt an explanation of the nature of the errors 
in our process for dealing with periodic boundary conditions. 
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