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Abstract

for solving the Dirichlet problem.
easily implementedin computation to provide an efficient approximation method
particular solution (MPS) and method of fundamental solution (MFS) can be
approximation scheme recently developed in [6] we show that the method of
for solving the Dirichlet problem for Poisson’s equation. Using a new
I n this paper we present convergence rates of the dual reciprocity method (DRM)

1 Introduction

R3 through the use of a new approximaton scheme recently developed in
scheme to bound the errors in the DRM for Poisson’s equation in R2 and
we present a way to overcome some of these difficulties by giving a general
seems to be difficult to generalize to other rbfs and to R3.In this paper
mation of the related Laplace’s equation. His argument, though rigorous,
coupled with a spline approximation method for the single layer approxi-
Pollandt in [g]who examined the use of thin-plate spline quasi-interpolation
ally cause the overall algorithm to diverge [3]. This effect was also noted by
the possibility that using high order source term approximations can actu-
ements. This latter property tends to increase the BEM error resulting in
the approximate particular solutions generated by using the given basis el-
between the accuracy of the source term approximation and the growth of
error in approximating the source term. However, there ti a “see-saw” effect
of the errors due to the chosen boundary element method (BEM) and the
DRM seems predicated on the belief that the incurred errors are the sum
[l]to a variety of scientific and engineering problems. The work on the
Recently there has been increasing interest in the application of the DRM
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examine other differential equations in future work.
discussed here is not limited to the Dirichlet problem, which we will use to
the phyiscal domain needed in the BEM. The application of the methods
exact solution of the Dirichlet problem avoiding the difficulty of discretizing
MFS can be easily implemented to achieve an efficient approximation of the
[6] . By this new approximation scheme we also show that the MPS and

using the MPS and MFS in Section 4.
the convergenceresults for the DRM and examine a numerical example by
imation scheme and the approximate particular solutions. Then we present
numerical methods mentioned above. In Section 3 we present a rbf approx-

The organization of this paper is as follows. In Section 2 we describe the

2 Description of numerical methods for solv-
ing the Dirichlet problem

2.1 MPS
The Dirichlet problem for Poisson’sequation is expressed as follows:

Au(J:) = f ( z ) , J: E R,
( 2 )
(1)

U(.) = g ( z ) , z E d R ,

that a particular solution up of (1)is available, that is
numerically. For instance, in the implementation of the MPS, we assume
for instance]. Practically, certain methods have to be used to solve (1)-(2)
it is known that there exists a unique C” function U satisfying (1)-(2) [8,
assume that 69 is C”, and f , g are C” on R, 6’0,as well). Theoretically,
d R is the boundary of R which is assumedto be smooth. (For simplicity,we
where R is a bounded and simply connected domain in R“ for S = 2 or 3, and

b p ( ” ) = f ( Z ) , E 0, ( 3 )

the unique solution of the Dirichlet problem (1)-(2), by letting
but does not necessarily satis@ the boundary condition (2). Then, if U is

then

AV(.) = 0, z E R,
W(.) = g(z) -U$&) , z E x 2 . (6)

(5)
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solution of (1)-(2) is given by
Denote by v b the solution of the above equations (5)-(6). Then the unique

U u p + ’&. (7)

The BEM can be used to solve (5)-(6), which we review below for the
double layer potential only.

following double layer potential [2]
It is known that the exact solution U of (5)-(6) can be expressed by the

2.2 BEM via double layer potential

so1ution:f Laplace’s equation, given by
where $- denotes the normal derivative, and G(x,y) is the fundamental

for urn.
results in an approximate solution v, of (8). Below is a convergenceresult
method such as a collocation or a Galerkin method [2,for details], which
poses, one obtains an approximate solution omof (9) by some numerical

In general, CT in (9) can not be computed explicitly. For practical pur-

v 0.f (8 )-(9 ) by the double luyer potential, then
Theorem 1 Let 71, be the numerical approzimation to t h e exact solution

numerical solution.
on the smoothness of the solution and the method chosen for f i n d i n g the
where M ( m ) is the dimension o,f the solution space, and X and l depend

in which we choose a fictitious domain fi such that C! C Q, and assume the
Another method for solving the homogeneousequation (8)-(9) is the MFS,

2.3 MFS
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linear combination of fundamental solutions
approximate solution v, to the exact solution of (5)-(6) can expressed as a

m

then set
number of source points on the physical boundary of Q . Let {xi};" E X ? ,
collocationmethod, we choose the same number of collocation points as the
do is to enforce v, so that it satisfies the boundary condition (6). By the
that W, automatically satisfies the differential equation (5). All we need to
points, or singularities, {yi};" are placed on the boundary of fi. Notice
where G(z ,y) is the fundamental solution given in (lo), and the source

if X 1 is a chosen Jordan curve in the plane and the data are analytic, then
of the MFS have been derived in [4]and several other papers. For instance,
which can be used to solve for {G};". Theoretical results on the convergence

where T and R are the diameters of R and 0 , respectively.

2.4 Approximate solution of the Dirichlet problem

f by a linear combination of basis functions {q53(~)};?-~. That is,
found widespread use in the engineeringliterature. Begin by approximating
Numerically, to find a particular solution of (1), the followingtechnique has

proximation tsof . Then one defines
where the coefficients are determined in a manner so that f is a good ap-
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where $3 satisfies

A+J = 42, 12j 5 N . (17)

By linearity, it follows immediately that

AUN= f

an approximate solution V N , ~ ,and
(8)-(9) with respect to g ( z ) - U N ( X ) by either the BEM or the MFS to get
rather than solving (8)-(9)for v with respect to g(%)- u P ( z )in (g), we solve
so that U N can be thought of as an "approximate" particular solution. Then

(18)

.iL = V N , m + U N (19)

is considered as an approximation to the solution U of (l)-(2 ) .

3.1 Rbf approximation

3 Approximate particular solutions

where I = [-l, l]".For any integer n, set
Micchelli [6]. First we introduce some notation. For S > 0, let f26 = R + U ,
We now describe an approximation scheme recently developed in Li and

f whose gradient i s in P ( O ) with the usual Sobolev norm
where 1 := (l, .. . , l )E 2".Denote by ? P 1 (Cl) the space of all functions

the property that
tions in W ~ 3 ' ( Q ~ )over the region R. Suppose that 4 E L1(R")is given with
which vanishes outside of RJ. We then consider the approximation of func-
ported m G. Denote by W:"(!&) the subspace of functions in W'>'(R")
outside of 0 6 . Let fx = f . x, then fx E W P ~ ' ( I 2 " )and it is compactly sup-
of smoothness such that x is identical to 1 on the closure and vanishes
For a function f E W P a l (Os), one can choosea function x of a certain degree

For every f E (C~J)and an integer n E N : let
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Denote by S@(R")the set of all functions f satisfying

I f ( x ) l I4+ W P ~ (24)

positive constant. The following result is shown in Li and Micchelli [6].
for all x = ( 2 1 , . . . ,a,) E R", where 1 x 1 := max{/ziI;1 .< i 5 S } and c is a

c such that for all f E W0p.l(0,) and large n t N there holds the inequality
0 < X < y <&, where f + = 1. Then there exists a positive constant
Theorem 2 Suppose that 4 E W P > l(R")nS" (R")for some a > S and

I l M - f/L"(n)i2 I l f l h w ( s 2 , ) (25)

where 7 :=min {A, (y- A ) ( a - S ) , 1-y- s y / q } .

Below we give an example to illustrate the approximatoin error.

Example 1

Consider f(z,y) = 2dz--Y) m R2.Let

which is a piecewise cubic polynomial in C', and let

W @ )= T ( 6 + h + t )T(l + 6 + h- t ) . (27)

when t E [-S, 1+ S]. Figure 1is the graph of W when S= 0.05 and h = 0.5.
Then W is compactly supported in [-S - h, 1+ S + h], and it takes on 1

We then set

m > Y) = f(G?4)W(z)W(Y) (28)

function that we use in ( 2 3 ) is
and consider the approximation on the domain D = [0,112. The basis
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Figure 1: The graph of W

choices of n, where we set S = h = 0.05.
imation error B,f - f at certain specified points with respect to different
which is an inverse multiquadric. Below is a table of the absolute approx-

i loo 1 150 l
!

7.44e-003 1.52e-003 5.07e-004 2.73e-004
(0.3824, 0.1251) 2.20e-004 1.72e-003 6.35e-004 3.50e-004
(0.2672, 0.8132) 2.46e-003 7.73e-004 2.88e-004 1.58e-004
(0.9013,0.0560) 5.77e-002 1.53e-004 9.78e-004 6.Ole-004 j

(0.5000,0.5000)

3.2 Bounds on the norms of approximate particular
solutions by rbfs

Poisson’sequation expressed in radial form as follows:
To use rbfs to approximate the source term f , it is convenient to study

Id p ) == ($(.r)
T dr

in R2 and

(30)

in R3.By straightforward integration, $(r) is given by the integrals

$(r) = -y2 6’S In s$(sr)ds + A In T + B (32)

in R2and

$(T) r2L’s(1- s)q%(sr)ds+ + 13 (33)r

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com  Email witpress@witpress.com
Paper from: Boundary Elements XXIV, CA Brebbia, A Tadeu and V Popov (Editors).
ISBN 1-85312-914-3



94 B o u ~ i w - ~ ~E l m c n t s X X I V

determined in terms of exponential integral functions.
multiquadrics and compactly supported rbfs. For Gaussians, +(r) can be
puted explicitly for many of the standard rbfs such as thin plate splines,
in both (32) and (33). As shown for example in p ] , +(I - ) can be com-
in R3. Sincc we want +(r) to be continuous at r = 0 we set A = B = 0

given by
qb(r). Then an approximate particular solution corresponding to (23) is
on the norms of approximate particular solutions. Let +(r )satisfy A$(T) =

To derive the convergence results for the DRM, we need the estimates

@(r2)with the property that

for S = 2 or 3.
For the sake of discussion,we consider radial basis functions of the form

L3@ ( r 2 ) d x= 1, (35)

derivatives decay in the following order
and moreover we require that Q, is 1 times continuously differentibleand its

particular solutions hold.
to satisfy (35)-(36) [7].The following results on the norms of approximate
pactly supported rbfs, multiquadrics and inversemultiquadrics can be made
for 0 5 i 5 1. Most of the commonly used rbfs including Gaussians, com-

Let 21, be the apprommate particular solution given in (34). Then
Proposition 3 Suppose that Q, satisfies (35) and (36), and AXU = @(r2).

I I 4 l w L P ( m ) -
< C n ( ~ + s b (37)

f o r a n y p , l < p s m ,  w h e r e s = 2 01-3.

Similar results on thin plate splines are also be derived [5].

4 Theorectical and numerical results

by the numerical solution of
Let U, be the approximate particular solution of (1) given in (27). Denote
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Av(2) = 0 , x t R ,
.(x) = g ( x ) - , & ( x ) , 2 E t m , (39)

(38)

obtained by solving the double layer potential equation. Then we consider

%,m z= un + %,m (40)

[5, for details].
1and 2, and Proposition 3, the following convergenceresult can be derived
as a numerical (or approximate) solution of (1)-(2). By applying Theorems

(36), and un,mbe a numerical solution of (1)-(2) given by ( .O) , then
Theorem 4 Let U be the exact solution of (1)-(2). Let @(r2)satisfy (35)-

+ p t ) 5 G ll.fllW(Q,) + c M ( m ) - w + “ ) , (41)

potential equation.
where M(rn)-’ depends on the method used foT solving the double layer

Below we give an exmaple of solving the Dirichlet problem in R2 by

Example 2

using the MPS and MFS.

Consider

4 4 2 , y ) = 2 e ( ” 4 , (2,g ) E R, (42)
u ( 2 , y ) = d - y ) , ( x ,y) E x 2 . (43)

Let d(r)=h,as in Example 1,and A$ ( r )= 6, ( r ) ,then
Assume that R is the domain given by (x- 1/2)’ + (g- 1/2)2 5 ( l /2 )2 .

$, and we then use MFS to solve the following homogeneousequation
Let U , be the approximate particular solution given in (23) with respect to

W % Y ) = 0, ( x ,Y ) E Q,

u ( x , y ) = & - - y ) - &(X, y), ( x ,y) E X L (46)
(45)
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seems that m = 10 already gives an efficient approximation result.
n = 100 in the approximation of 2e(”-Y), and use different values of m. It
error of - uexactat certain tested points inside 0, where we choose
(42)-(43) is u,,,,t = Belowis a table of the absolute approximation
U, + wm,n as an approximate solution of (42)-(43). The exact solution of
approximate solution of (45)-(46) by the MFS. Then we consider U,,, =
respectively, where we use m for the number of points. Let vm,, be the
the source and collocation points be equally distributed on dR and $l,
Choose the fictitious domain fl to be (x- 1/2)2 + (y - 1,/2)25 (3)’ . Let
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