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Abstract

Numerical modelling and simulation represent essential tools for evalua-
tion of the safety of nuclear waste repositories. The Dual Reciprocity
Boundary Element method (DRBEM) is used in this paper to solve the
Darcy—Brinkman equation, and coupled species transport equations of the
Pu-241 decay chain near the hypothetic repository. For this purpose, the
very recently developed unified DRBEM formulation for nonlinear coupled
transport phenomena has been applied. Fully implicit time-discretization,
Laplace equation fundamental solution weighting, scaled augmented thin
plate spline based dual reciprocity transformation, and constant discontin-
uous boundary elements are used for space-discretization in two dimensions.
The simulations will be used in independent performance assessment of the
foreseen Slovenian low and intermediate level radioactive waste repository.

1 Introduction

The radioactive waste management is a very important humanity issue.
The design goal is a repository that society will have a high confidence in
[1]. The heart of the safety case for a repository lies in computer models
that predict the long-term fate of the disposed radionuclides. This type
of modelling [2.3] is reffered to as Performance Assessment (PA). This is
a very complex task with many technical disciplines involved [4], covering
numerous physical, chemical and biological processes such as: (i) Corrosion
of waste containers, (i1} Degradation of the waste materials in the presence
of groundwater, (iii) Physical and chemical processes that can result in the
exposure of radionuclides to the groundwater within the repository. (iv)
Transport processes that could result in migration of released radionuclides
through the geosphere to the biosphere, (v) Physical, biological, and anthro-
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pogenic processes in the biosphere that could affect the exposure, uptake
and dose to human or ecosystem receptors, (vi) The effects on all systems
due to climate change, human intrusion, or other external factors.

In PA we need to qualitatively understand and quantitatively conser-
vatively estimate the paths and intensity of pollutants transfer from the
repository to geosphere and further to biosphere. The source of the pollu-
tant is in the repository, which is made of concrete and it is representing
an engineering barrier. In this paper we focus on computation of transport
of radioactive pollutants from the repository to near-field host geological
system [5]. The schematics of the problem is shown in Figure 1.
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Figure 1: Schematics of the hypothetical repository and the near-field sur-
rounding.

2 Governing equations

Four governing equations are used in this paper in order to demonstrate
the complete coping with the basic ideas and the key elements of the so-
lution of the near-field problem by the DRBEM. The equations are posed
on a connected fixed domain £ with boundary T occupied by three dif-
ferent materials: the soil, the backfill with waste zone, and the sediment.
All three involved materials are modelled as Darcy-Brinkman [6] saturated
porous media with the bulk density gy, porosity €, permeability K, distri-
bution coeflicient K, longitudinal «; and transversal ar dispersivity, and
molecular diffusion coefficient D,,. The radionuclide transport is carried out
by groundwater with viscosity p and density ¢. The groundwater flow is
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described by the following two mass and momentum conservation partial
differential equations for the seepage velocity v

d .
et Volevi=0 (1)
J I :
b—t(gv):—VP—Ev+V~(qu) (2)

Only two radionuclides are taken into consideration because of the confer-
ence paper limitations. Transport of Np-237 is described by

0 0
5‘;01+V'(Vcl):v'(D1v01>—/\1R161+'(,%’r1 (3)
and the transport of U-233 is described by
é) .
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Decay constant A is defined A = In2/t; /5 through half-life ¢, ,. Hydrody-
namic dispersion tensor D is calculated [7] from the local hydrodynamic
dispersion tensor Dy, as
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Retardation coefficient R, that represents the ability of porous media to
remove dissolved chemical from the liquid to the solid matrix, and the media
interaction source 9Y /9t are defined as
o» Ky 9, 19, —
€ gt =1 RFC @
We seek the steady-state seepage velocity field and the long-term transient
concentration distribution by assuming known concentration and velocity
fields at time ¢y and the adjacent boundary conditions of the Dirichlet and
Neumann type, respectively.

R=1+

3 Solution procedure

3.1 Poisson reformulation of the general transport equation

The solution of the problem posed is based on the general transport equation

defined on a fixed domain © with boundary T, standing for a reasonably

broad spectra of mass, energy, momentum, and species transfer problems
J

a[gC(@)}%—V{ng(@)]z—V-(—DV(I))+S (8)
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with o, @, t, v, D, and S standing for density, transport variable, time,
velocity, diffusion matrix and source, respectively. Scalar function C stands
for possible more involved constitutive relations. The solution of the gov-
erning equation for the transport variable at the final time ¢ = ¢ + At is
sought, where to represents the initial time and At the positive time incre-
ment under assumption of known inital conditions and boundary conditions
of the Dirichlet, Neumann and Robin type. The governing equation is first
transformed by splitting of the diffusion matrix

D=DI+D (9)

into constant isotropic part DI, with I denoting identity matrix, and the
remaining nonlinear anisotropic part D’. The following Poisson equation
can be formulated afterwards

V=V O+

9= o-0C(#) - SYD. ©=[ovC(®)-D'VED  (10)

The inhomogenous terms are expanded as

Ox0+0p (P—3), OnO+0,4 (d-0) (11)

with ‘hat’ denoting value at previous iteration. The final form of the trans-
formed equation is

(VP—V . 045-03]0=V-O-V.-04d+0-6,d (12

3.2 Basic elements of the DRBEM solution procedure

The solution of the governing equations is made with the recently developed
DRBEM solution framework for the general transport equation [12]. The
framework is sufficiently broad for inclusion of the completely anisotropic,
non-linear, and multiphase problems. Its main characteristics is in an uni-
fied form of the solution procedure, able to cope with complicated cou-
pled transport phenomena in an ordered way. The described features give
DRBEM similar flexibility for coping with the complicated constitutive re-
lations like classical numerical approaches such as the finite volume method.
The transtormed governing equation is time-discretized in a fully implicit
manner, i.e.

G ey 2C(2) = 00 C(Pp)

Subscript 0 denotes value at the initial time ¢ = t; and no subscript de-
notes value at time to + Af. The governing equation is space-discretized
by weighting the time-discretized governing equation over the domain Q by
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the fundamental solution of the Laplace cquation T*. Let us focus on two-

dimensional (described in Cartesian coordinates p,, p, with base vectors i,,
iy) situations

" 1 To R

T*(pss) = 5= log (13)

with ¥ = (py—s,)*+{(p,—s,)? and ro standing for the scaling constant. The

following two integral equations can be deduced by assuming the propertics

of the fundamental solution and the Green’s theorems
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with ¢*(s) standing for the fundamental solution related coefficient. The
right hand sides of the integral equations (14.13) are, for shorting the nota-
tion. written back in unexpanded form. The integral equation (14) is used
for calculation of the unknown & and the integral equation (15) is used for
calculation of the partial derivatives of &: ®,¢;¢ = z,y. The integral types
that arise from defined weighting can be classified into the following six
types

VFT*dQ /}"T*dQ /T GT"dQ (16)
Q

TEFVTT O, /fVT*dQ., /V'QVT*dQ (17
Q

Q Y

where F and G refer to scalar and vector valued functions. They are com-
puted as follows. Boundary geometry is approximated by Nt straight line
segments, and spatial variation of the fields on each of the boundary seg-
ments is represented by constant interpolation functions with gridpoints
coinciding with the geometrical centers of the straight line segments. The
spatial variation of the fields in the domain is approximated by Nq global
interpolation functions of the form

F(p) = vu(plc v=1,2,---,N+3 N =N+ Ng

The two-dimensional scaled augmented thin plate splines are used in this
work (they do not require any free parameter)

Ua(p) =75 logr,; n=1,2,--- N

Un11(P) = pa — Py Une2(P) =Dy — 1)), Unts(p) =1 (18)

with

:!1\3

=(p~— pn) (p— pg_) (19)
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Scaling constants p? and p{) stand for the mean coordinates of the domain
Q. The domain integrals are transformed into finite series of boundary in-
tegrals by using the dual reciprocity transformation. The elements of the
involved boundary integral matrices and their derivatives are cvaluated an-
alytically. The application of the discretization and the described boundary
conditions gives square system of N linear equations for solving @ in the
domain points and ® or 9% /dnr in the boundary points. The involved sys-
tems af algebraic equations are solved, except for the pressure and pressure
correction equations, by using GMRES technique with Jacobi precondition-
ing [9]. In case of the two pressure equations which are singular due to the
prescribed Neumann boundary conditions over the whole boundary I, the
systems are solved by the Householder reduction to bidiagonal form and
QR diagonalization with shifts. All details of the formation of the systems
of algebraic equations from the discretized equation and discretized initial
and boundary conditions can be found in [12].

3.3 Coupled problem strategy and iteration margins

The four governing equations (pressure correction Poisson equation replaces
the mass conservation equation) are in each timestep solved in an iterative
bundle. Their representation within general transport equation context is
shown in Appendix. Both species diffusion equations depend on the mass
and momentum transport equations throug the velocity field. First, new
pressure field is solved, based on the old velocity, pressure and temperature
fields. Momentum equation is solved afterwards. Subsequently, pressure
correction field is solved based on the new velocity field. The new velocity
field is corrected through the pressure correction field. After convergence of
the velocity and pressure fields at each timestep, the first species conserva-
tion equation is solved for concentration 1, followed by the species conser-
vation equation for concentration 2. After each solution of any scalar @ a
relaxation with coeflicient c,q is made & = <f>+c,»el (P —i’) and the timestep
iterations are stopped when the criterion ([®ave| = [Pavgl)/|Pavs] < e is
reached, where subscript avg represents the average gridpoint value. The
criterion of reaching the steady state is (|Pavg] — |Pavgol)/|Paveo! < Ests-

3.4 DRBEM solution procedure verification

The DRBEM solution procedure has been verified for Navier-Stokes equa-
tions [10] by comparison with the classical Ghia-Ghia-Shin driven cavity
test case. The extensive tests [11,12] for proper natural convection flow in
porous media have been performed by comparison with the fine-mesh finite
volume results. The convective-diffusive species transpart, including the de-
cay chain effects, has been checked by comparison with the CXTFIT code
[13] results.
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4. Simulation of the radionuclide transport

Two-dimensional test case, representing the transport of sorbing species
from the repository to groundwater, is considered in the present paper.
The calculated area with all involved materials and dimensions can be seen
in Figure 1. The complete design calculation of the repository takes into ac-
count the following radionuclides: Co-60, Sr-90, Cs-137, Ni-59, Nb-94, [-129,
H-3, and decay chains of U-238 (U-234, Th-230, Ra-226), and Pu-241 (Np-
237, U-233, Th-229). Present test takes into account only the Pu-241 chain
in which only Np-237 and U-233 have been considered. This can be justified
by the half-life of Pu-241 (14.4 year) which is negligible in comparison with
Np-237 and U-233 half lives and the Th-229 transport has been omitted
due to limited conference paper scope. The design assumption of the unit
thickness repository activity of Pu-241 is considered to be 31.6 Bq/m which
corresponds to 5.1 - 107? moles/m of Pu-241. Since the Pu-241 is assumed
to be transformed to Np-237 instantaneously, this gives for a repository of
crossection 104.4 m? initial concentration of Np-237: C; = 0.0488 mol/ln:j.
The flow field in the surrounding geological structures and in the reposi-
tory has been calculated under assuption of Dirichlet boundary conditions
with seepage velocity v, = —0.25m/year on I'. Because the velocity field is
steady and not influenced by the concentrations, the velocity and transport
calculations can be made decoupled. Concentration boundary conditions on
the north boundary are of the Dirichlet type with C; = Cy = 0 mol/m? and
other boundary conditions are of the Neumann closed system type. Coarse
grid is applied with intention to show the robustness of the metod used.
The whole domain is modelled (instead of the possible symmetrical half) to

check the balance of the results.

Lproperties | symbol [ unit ] soil i concrete | sedimentﬂ
bulk density 0y kg/m® 2430 2590 2300
porosity € 1 0.1 0.12 0.15
permeability K m? 10e—6 | 10e—9 10e—5
Np-237 t1,2=2.14 e-6 years molar activity: 6.16 e+9 Bqg/mole |
distribution coefficient Ky m® /kg 05 [ 32 0.5
longitudinal dispersivity QL m 1.00 0.10 0.40
transversal dispersivity ar m 0.1 0.01 0.04
diffusion coeffisient D, m?/s 0.063 0.014 0.063
U-233 t1/2=1.59e-5 years molar activity: 8.32e+10 Bq/mole
distribution coefficient Ky ‘ m?®/kg | 0.035 0.79 0.035
longitudinal dispersivity ar m 1.00 0.10 0.40
transversal dispersivity ar m 0.1 0.01 0.04
diffusion coefficient D, m*/s 0.063 0.014 0.063

Table 1: Material properties [14].
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The calculated seepage velocity field is shown in Figure 2, and the calulated
temporal evolution of molar concentration and activity concentration of
treated isotopes in point p, = Om,p, = 5m (boundary of the engineering
barrier) are shown in Figures 3 and 4.
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Figure 2: Solution of the velocity field for the proposed test.

5 Conclusions

This paper demonstrates the first attempt of PA calculation of the involved
transport phenomena of sorbing and decaying solute in the geosphere by
the dual reciprocity boundary element method. The calculations are made
within the very recently developed standard computational framework for
solution of the coupled transport phenomena by this method. This frame-
work allows for coping with complicated coupled transport phenomena in
an ordered way. The framework is sufficiently broad for inclusion of the
completely anisotropic, non-linear, and multiphase problems and gives the
method similar flexibility to handle complicated physics like the more estab-
lished finite volume method. The principal advantage of the method used
represents the boundary-only evaluation of all involved weighting boundary-
domain integrals. Very simple test geometrical arrangement is used in this
paper so that the results can be compared to other solutions (respective
journal paper is underway). However, the boundary element - domain col-
location point character of the method allows for easy treatment of much
more involved geometries, very often found in realistic geosphere. This fact
represents the main comparative advantage of this method with respect to
the classical polygon-based computational approaches.
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Figure 3: Molar concentration vs. time for Np-237 and its daughter U-233.
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Figure 4: Activity concentration vs. time for Np-237 and its daughter U-233.
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