
The analog equation method for large

deflection analysis of heterogeneous anisotropic

membranes: a boundary-only solution

J.T. Katsikadelis & G. C. Tsiatas
Department of Civil Engineering,
National Technical University of Athens, GR-157 73, Greece

Abstract

The Analog Equation Method (AEM) is applied to non-linear analysis of
heterogeneous anisotropic membranes with arbitrary shape. In this case, the
response of the membrane is described by three coupled non-linear differential
equations with variable coefficients. The present formulation, being in terms of
the three displacements components, permits the application of geometrical in-
plane boundary conditions. The membrane is prestressed either by prescribed
boundary displacements or by tractions. Using the concept of the analog
equation, the three coupled non-linear equations are replaced by three uncoupled
Poisson's equations with fictitious sources under the same boundary conditions.
The fictitious sources are established using a procedure based on BEM and the
displacement components as well as the stress resultants are evaluated from their
integral representations at any point of the membrane. Several membranes are
analyzed which illustrate the method and demonstrate its capabilities. Moreover,
usefbl conclusions are drawn for the non-linear response of heterogeneous
anisotropic membranes. The method has all the advantages of the pure BEM,
since the discretization and integration are limited only to the boundary.

1 Introduction

Structural membranes are usually made from composite materials, which exhibit
orthogonal anisotropy. Heterogeneity may also appear. For example membranes
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330 Boundary Elements XXII

of variable thickness are used, when it is required, to reinforce the membrane
locally or to control its transverse displacements.

In the linear membrane theory, we assume that the additional stretching of
the membrane due to the in-service transverse load is small and the stress
resultants are predetermined and remain unchanged during the out-of-plane
deformation. However, with increasing the transverse load, the additional
stretching of the membrane can not be neglected. A consequence of this is that
the resulting differential equations governing the equilibrium of the membrane
are coupled and non-linear. In heterogeneous anisotropic membranes the
governing equations are even more complicated as their coefficients are variable.

The solution of the membrane differential equations is a very difficult
mathematical problem. Analytical solutions are available only for homogeneous
isotropic membranes and for simple geometry, such as circular membranes under
axisymmetric loading where the problem becomes one-dimensional.
Approximate and numerical solutions are also available in the literature (see [1]).
The FEM has been employed for large deflection analysis of homogeneous, both
isotropic and anisotropic, membranes. However, to the author's knowledge, no
FEM solutions are available for heterogeneous anisotropic membranes. The
BEM has been also employed for large deflection analysis of homogeneous
isotropic membranes. Katsikadelis and Nerantzaki [2] developed a D/BEM
approach for the solution of this problem, which was further developed by
Katsikadelis et al. [1] to boundary-only BEM.

In this paper, the equations for large deflections analysis of heterogeneous
anisotropic membranes are derived and a boundary-only solution is developed to
solve the resulting three coupled non-linear differential equations with variable
coefficients. Without restricting the generality, orthogonally anisotropic
membranes are treated since this is the usual case in engineering practice. The
method is based on the concept of the analog equation, according to which the
three coupled non-linear differential equations governing the equilibrium of the
membrane are replaced by three Poisson's equations with fictitious domain
source under the same boundary conditions. The fictitious sources are
established using a procedure based on BEM as it was developed for non-linear
problems [3], The three displacement components as well as their derivatives are
computed from their integral representations, which are used as mathematical
formulas. The stress resultants at any interior point and the reactions at any
boundary point are also evaluated. Several membranes are analyzed to illustrate
the applicability, efficiency and accuracy of the method. Moreover, useful
conclusions are drawn concerning the response of the heterogeneous anisotropic
membranes.

2 Problem statement and governing equations

Consider a thin flexible initially flat elastic membrane consisting of
heterogeneous anisotropic linearly elastic material occupying the two-
dimensional, in general multiply connected, domain Q in xy -plane bounded by
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Boundary Elements XXII 331

the K + l nonintersecting contours Fg,Fp...r̂  .The membrane is prestressed

either by imposed displacement u,v or by tractions T̂ f̂  acting along the

boundary F = U *r£ F . . Moderate large deflections are considered. They result

from non-linear kinematic relations, which retain the square of the slopes of the
deflection surface. Thus, the strain components are given as

c* = %,* + ̂  ̂  ' ̂  ̂  ̂ "^ 2 ̂  ' ̂  ̂  ̂^ ̂" "*"̂ " ̂ ^ (la,b,c)

where u = u(x, y) , v — v(x, y) are the in-plane displacement component and

w = w(x,y) the transverse deflection produced when the membrane is subjected

to the lateral load g — g(x, y) acting in the direction normal to its plane.

For orthotropic linearly elastic material the stress strain relations are given as
[4]

771 771

_ _
1 2 1 2

where Ê  Ê  and r/̂ z/̂  (Ê  = Ê  ) are the elastic moduli and the Poisson

coefficients in the x and y directions, respectively; and G is the shear
modulus.

The total potential of the deformed membrane is given as

- f gw<Kl - f (1> + fv + Vw)ds
J n J r

where V is the prescribed transverse force per unit length along the boundary.
The coefficients C^ = C^ (x, y) , C^ = C^ (x, y) , C = C(x, y) and

Ĉ  — Ĉ (x, y) , which characterize the membrane stiffness are given as

Kb E,6
G = -^ - , = — ̂ - , (4a,b)

The vanishing of the first variation of the total potential, <5II = 0 , yields the
following differential equations, which govern the equilibrium of heterogeneous
orthogonally anisotropic membrane in terms of the displacement components

),, = 4̂ < +|< )„ -(Ĉ  «,,,),, (5a)

, )„ = -(-< +< )„ -(Ĉ  «,„ ), (5b)
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332 Boundary Elements XXII

K7i(%,% +- w,% ) + C(v,y + -̂  )]w,̂  4-2[Ĉ (̂  +%,* +̂  w,y )]w,̂  +
(5c)

in ft together with the boundary conditions on F

TX = T; or u = u (6a)

^=^ or v = v (6b)

T̂ ŵ  +7;ŵ  = f or w = w (6c)

where

Tj. — NX cos a + N.^ sin a , 2], = 7V^ cos a + Ny sin a (7a,b)

are the components of the boundary tractions; a = Zx,n. The tilde over a
symbol designates prescribed quantity. It should be noted that mixed boundary
conditions could also be applied N̂ ,Ny,N̂  are the membrane forces in d

given as

AT, = <7,A , ^ = ̂ /, , A^ = T̂ /, (8a,b,c)

The prestress can be applied either before the action of the transverse load or
simultaneously. In the first case, the transverse load should be applied with
homogeneous in-plane boundary conditions, i.e. u — 0 , v — 0 and the terms in
brackets (membrane forces) in eqn (5c) should be augmented by those resulting
from the prestress. Since T̂  and Ty depend on the squares of ŵ  and ŵ  , we

can readily conclude that the boundary conditions are non-linear, when the
tractions are prescribed. In this analysis, without restricting the generality, it is
assumed that the membrane is prestressed by imposed boundary displacements
acting simultaneously with the transverse load Namely, the assumed boundary
conditions are

u = u, v — v , w = w (9a,b,c)

When the membrane is prestressed by boundary tractions, the displacements u, v

are first established by solving a plane stress problem. In any case, attention
should be paid, so that the prestress will result in tensile forces N^N^ in the

principal directions to avoid wrinkling of the membrane, namely

±

3 The analog equation method for large deflections of

membranes

The boundary value problem described by eqns (5) and (9) is solved using the
Analog Equation Method (AEM). Detailed description of the AEM for large
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333

deflection analysis of membranes is presented in [1]. However, for the
completeness of this paper the method is concisely prescribed here.

According to the concept of the analog equation [3], eqns (5) are replaced
with three Poisson's equations

V\ = 6. (% = 1, 2, 3) (11)

where fr = b̂ x̂ x̂ ) are fictitious sources. Note that here t̂ , u^u^ stand for

the functions u,v,w, respectively. The fictitious sources are established using

BEM. For this purpose fr is approximated by

where / are approximation radial base functions and â  are 3M coefficients

to be determined We look for a solution in the form u. + u? where u. is the

homogeneous solution and U? a particular one. The particular solution is

obtained as

where u is a particular solution of

vV = ̂ . (14)

The homogenous solution is obtained from the boundary value problem
M

V% = 0 in n and u.=u.-^a®u. on T (15a.b)i i i L-J 3 ] \ , J
J=l

Thus, writing the solution of the homogeneous eqn (15a) in integral form, the
solution of eqn (11) is given as

M
*%. -%.<)ds 4- To % = 1,2,3 (16)

with u* — inr /2?r, r = \P — Q\, Q G F being the fimdamental solution of the

Laplace equation and c = 1, 1 / 2, 0 depending on whether P 6 fi , P G F ,

P £ Q, U F , respectively. The first and second derivatives of the displacements

for points inside H (c — 1) are obtained by direct differentiation of eqn (16).

Thus, we have

,l = 1,2) (18)
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334 Boundary Elements XXII

Boundai
Total N

ry nodes

.̂ 4-* I \w_

Interior nodes
Total M

^ / /

Figure 1: Boundary discretization and domain nodal points

Using the BEM with N constant boundary elements, discretizing eqn (16) and
applying it to the N boundary nodal points yield

%u. = Hir - Gu.* + Uâ  (i = 1, 2, 3) (19)

where H,G are N x N and U N x M known matrices and a^ is the vector

of the unknown coefficients. Eqns (16), (17) and (18) are subsequently applied to
M points inside the domain (c = 1) (see Fig.l). This yields after elimination of

u and û  by virtue of the boundary conditions (15b).

u. = Da^ + Eu. (20)

\6=V>+% (21)

\^=D^+E^ (22)

where (i = 1, 2, 3 ; fc,/ — 1, 2) and D,E,...,Ê  are known matrices.

The final step of AEM is to apply eqns (5) to the M points inside fl and
substitute u. and their derivatives from eqns (20)-(22). This yields

a^=F/a^) (23a)

aO) = %,(â ) (23b)

(̂3) = p̂ (â ) (23c)

Eqns (23) can be solved numerically to evaluate {â } . Note that eqn (23c) is

non-linear and it can be solved using any method for solving non-linear algebraic
equations. In this investigation the fixed point method has been employed after

modifying F̂ (â ) appropriately, so that it becomes a contraction mapping.

This guarantees the convergence, particularly in the case of zero prestress, where
the other methods (e.g. Newton-Raphson) fail to converge. Once the coefficients

a^ have been evaluated the displacements and their derivatives at the M

points are computed from eqns (20)-(22). For points P 6 fi not coinciding with
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Boundary Elements XXII 335

the nodal points these quantities are evaluated from the discretized counterparts
ofeqns(16H18).

4 Numerical Examples

On the basis of the numerical procedure presented in the previous section a
FORTRAN code has been written and numerical results for certain membranes
have been obtained, which illustrate the effectiveness of the method. The
employed approximation functions f. are the multiquadrics [5] which are

defined as

where c is an arbitrary constant and

-x.f+(y — y.f j = 1,2,...,M (25)

with x.,y. being the collocation point. Using these radial base functions the

particular solution of eqn (14) is obtained as

. ̂ _J_

^ 3 " * ' 9'

The numerical results are presented using the following non-dimensional
quantities.

u — uIa , W = v / a, w = w/a , N = N —, ~g — g — (27)
Eh Eh

where a denotes a characteristic length of the membrane and N a sectional
force per unit length.

4.1 Square anisotropic membrane

A square membrane with side length a = 5.0m has been analyzed (N = 100,

M = 49). The employed data are E^ = E / 4\ , E^ = Ej\ ; z/^ = 0.3,

z/g — \v^. First the membrane was analyzed with zero prestress and A ==1.5,

E = 134722&N /n? , G = 48529A;7V/m̂  in order to compare the results with

those obtained by the FEM using the NASTRAN code for thin orthotropic plates
with negligible thickness (h = 0.004m). The obtained results for the central
deflection ŵ  versus the load ~g are shown in Fig. 2. Afterwards the membrane

was prestressed as shown in Fig.3 (u = v = 0.05m) and analyzed under a
uniform load. The employed data are ~g = 0.06, h — 0.002m;

A = 1.0, 1.5, 2.0 and ̂&, = E = 110000A:7V/m̂ , G = E j 2(1 -f-1/̂

Results for the response of the membrane are shown in Fig.4 through Fig. 7.
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4.2 Square heterogeneous membrane

Boundary Elements XXII

A square heterogeneous isotropic ( A = 1 ) membrane, subjected to a uniform
load, has been analyzed (TV = 100, M = 49). The membrane was prestressed
as in example 4.1. The heterogeneity results from the variable thickness of the

membrane. The employed data are a = 5.0m , g = 3kN / ir? ,

Ej = #2 = E = HOOOOfcJV/m^ , i/^ = ̂ = 0.3 . Three cases of thickness

variation have been studied (i) ft = ftjl + 7r* /a?], r = (x* + y V^ ,

ftg = 0.0005m (ii) h = 13^ /6 and (iii) h = ftj!2 - 7̂ /0̂ /5. j^ ̂ U three

cases the volume V of the material has been kept unchanged, that is

V = ISftgfl̂  /6. The obtained results for the deflections and stresses along

y = 0 are shown in Fig. 8 and Fig. 9. It should be noted that the case (i) gives

large deflections, while the two others have no significant difference.

4.3 Membrane of arbitrary shape

In this example, the heterogeneous orthotropic membrane of arbitrary shape
shown in Fig. 10 was analyzed ( N = 80 , M — 61 ). Its boundary is defined by

the curve r = 5|sin Of + 6|cos of , 0 < 0 < 2?r . The membrane is prestressed

by u^ = 0.05m in the direction normal to the boundary while u^ — 0 in the

tangential direction. The employed data are h = 0.002m, g

^ =0.3, ̂  = A^ and G = E/2(l

where E = 110000 -f kr* , r = (o^ -f- and fc constant. The computed

deflections and the contours of the principle stress resultants

values of k and A are shown in Fig. 1 1 through Fig. 13 .

for various

0 0.005 0.01 0.015 0.02 * KT
§

Figure 2: Central deflection versus load Figure 3: Prestress by imposed
displacements
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Boundary Elements XXII

Figure 4: Central deflection versus load Figure 5: Deflection profiles at y = 0

0.055 -

-0.5 -0.25 0.25 0.5 -0.5 -0.25 0.25 0.5

Figure 6: Variation of A^ at y = 0 Figure 7: Variation of N at x = 0

- 2 - 1 0 1 2 - 2 - 1 0 1 2

Figure 8: Deflection profiles at y = 0 Figure 9: Variation of <r^ at y = 0
0-

Figure 10: Membrane of arbitrary Figure 11: Deflection profiles at
shape and nodal points x = 0
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\

-6 -S -4 -3 -2 -1 0
Figure 12: Contour of

6 = 0)

5 Conclusions

fi (A = 2,
-6 -5 -4 -3 -2 -1

Figure 13: Contour of N^ (A = 2,

jfe = 5000)

In this paper a boundary-only method has been presented for large deflection
analysis of initial flat heterogeneous anisotropic elastic membranes. The method
is based on the concept of the analog equation. From the presented analysis and
the numerical examples the following main conclusions can be drawn.
(i) As the method is boundary-only it has all the advantages of the BEM, i.e.

the discretization and integration are performed only on the boundary.
(ii) The deflections and the stress resultants are computed at any point using

the respective integral representation as mathematical formulas.
(iii) Accurate numerical results for the displacements and the stress resultants

are obtained.
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