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ABSTRACT

Functional languages offer a high degree of abstraction to the programmer
while containing a great deal of implicit parallelism. This parallelism could be
efficiently exploited if parallel algorithmic structures were used in the design
of algorithms. A structure captures the behaviour of a parallel programming
paradigm and acts as a template in the design of an algorithm. This paper
addresses the issue of defining a structure for static iterative transformation
(SIT) algorithms which are coarse-grained data parallel algorithms with an
iterative control structure. The parameters required by the structure are sup-
plied by the programmer using a functional language, forming the problem
specification. This specification can then be successively turned into a sequen-
tial functional program, then into a parallel program for a graph reduction
machine, and finally into a program that maps on a specific parallel architec-
ture.

INTRODUCTION

Two major problems are hampering the acceptance of functional languages
as a means of programming parallel systems. First is the difficulty in writing
some programs with sufficient inherent parallelism. Second is the unpredictable
performance of programs due to problems of load-balancing, grain size, and
locality of references.

One potential solution to both these problems involves the use of con-
structs known as parallel algorithmic structures (or skeletons). Such structures
capture the behaviour of an entire class of parallel algorithms or a paradigm.
Any algorithm that obeys a known paradigm can then be specified by us-
ing its corresponding parallel algorithmic structure as a template, leaving the
lower level details of exploiting parallelism to the implementation. Therefore,
the process of designing a program is entirely "paradigm-oriented": a user
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378 Applications of Supercomputers in Engineering

enters the problem specification by defining the parameters required by the
corresponding structure. This approach benefits the programmer in providing
convenient high-level parallel concepts, while expressing the parallelism in a
non-architectural way provides the opportunity for efficient implementation
across parallel architectures. The paradigm-oriented approach is explained in
detail in [17].

This paper addresses the issue of defining a parallel algorithmic structure
for a specific class of parallel algorithms, called static iterative transformation
(or SIT) algorithms. We show what the user needs to define in the specification,
and how this specification can be successively converted into a sequential func-
tional program, then into a parallel program for a graph reduction machine,
and finally into a program that maps onto a specific parallel architecture.

ITERATIVE TRANSFORMATION ALGORITHMS

These algorithms operate on a set of homogeneous data objects. These objects
are transformed through several iteration steps. During an iteration step, each
object performs a computation using local data or data received from other
objects. There is also global shared information which is updated at each step
by combining local data from the objects (ie "reduce" operations). The sharing
of global information is made available usually via some form of "broadcast"
operation.

We only intend to consider the static case where the number of objects
does not change at run-time. An enhancement of this are genetic algorithms
which have iterations which can produce new objects. This class of algorithms
is of great importance in scientific and engineering applications such as im-
age processing, numerical analysis and finite element methods. They can be
considered as data-parallel algorithms [7] with an iterative control structure
and a coarser grain than simple vector processing. Most of these algorithms
correspond to domain partition algorithms [12] or are simply referred to as
geometric parallelism.

THE USER'S SPECIFICATION

To design a SIT algorithm, the user has to specify a description of the local
state, and how a state changes from one iteration to another. The user also
identifies the global variables and how their value changes after each iteration
step. The rest of this section shows how to enter these various parameters
using a functional language. In the examples, functions are defined using the
Haskell[9] syntax. Some knowledge of the language is assumed.

Transformations

As the number of objects does not change, we assume that the size of the set is
defined as a special constant wsetsize whose value can be accessed anywhere
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Applications of Supercomputers in Engineering 379

transf ((v,w),g) - ((v+1,w*2),g+l)

iteration step
==»

Global data

Figure 1: A totally distributed SIT algorithm

in the specification. Each object carries p items of information in a tuple, and
is uniquely identified in the set through a global coordinates system. Global
information that is accessible by all the objects is also represented as a tuple.
A transformation occurs during an iteration cycle. To make the process of
defining a transformation easy, local state and global variables are paired into
a tuple ((61,32, • • • ,5p), Wi,42, . • .,&,)) and transformations can be defined as:

The left component of the result (ŝ , s^, . . . , sj,) represents the new state
(in each object) and the right hand side (^,22,--,2g) represents the new
global data. /1W commwmco^on %s zmpWZ f/tro%#A wHoWe name references.
For example, a global variable # referred to in the right hand side corresponds
to a local access, while if it appears on the left hand side it corresponds to a
broadcast operation. An example of a transformation is shown in figure 1.

The left component may also contain references to the self index coord
in case objects need to know their position in the set. Local neighbourhood
communication is achieved through references to external expression lists. An
external expression list is of the form ezpWesf where ezp is an arbitrary
expression and dest is a list of neighbour coordinates. It means that the
expression exp is computed by each of the objects whose coordinates are in
dest and the cumulated results are returned as a list. An expression computed
remotely may refer to state variables before or after they are modified in the
iteration cycle. An example is illustrated in figure 2.

Initial conditions and termination

The initial state (si,.,S2,-,. . . ,$p.) for each object and the initial global values
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380 Applications of Supercomputers in Engineering

transf (v,g) - (V , sum v@ [1, 2, 3] +sum v' @ [4, 5, 6, 7])
where v' - if coord < 4 o

then sum v@[ coord * 2, coord * 2 + 1]
coordinate else g

00000000

Global data

Figure 2: A SIT algorithm with neighbourhood communication

ii, <72;, ...,#?,) are defined using a parameterless transformation init.

The initial state values may contain references to the self-index coord
but should not contain external expression lists. The final component in the
specification is the termination condition terminate. Termination is decided
based upon the value of the global data only.

Problem specification

Given a transformation transf to be executed at each iteration cycle, the initial
values and a termination condition, the entire SIT problem can be expressed
using a special function sit$:

problem = sit$ terminate transf init

There is a program transformation called S that can be applied to the
specification producing a sequential functional program which is the executable
specification. For details about this transformation and the definition of the
function sit$, see [17].

Examples

The following examples show how to define specifications for various SIT al-
gorithms.
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Applications of Supercomputers in Engineering 381

Iterative methods: Iterative methods work by continuously refining a solution
to a problem until an acceptable one is reached. A well known example of
iterative methods is when solving a set of equations Ax = b where A is an n x n
matrix, 6 a vector of size n and x is the vector of size n to be determined. These
methods only converge when some conditions apply but this is not discussed
in this paper for the sake of simplicity.

Two methods are considered here: the Jacob! relaxation and the Gauss-
Seidel relaxation. For each of these methods, the corresponding specification
will be given. In the Jacob! relaxation, each point x,- in the vector x is refined
according to the following equation:

We assume that the algorithm stops when the difference between the old
value and the new one at every point is less than some threshold. The objects
are arranged into a chain of size wsetsize. Each object is uniquely identified
by its position i in the chain where 1 < i < wsetsize. In the calculation, an
object i only requires the row i of the matrix A. Therefore, the state of an
object consists of the row A,, the constant 6, and the variable z,. We choose to
keep the maximum difference between two successive values in all the grid as
a global variable. To write the specification, we need a function sumprod that
computes the sum of the product between a row in the matrix (represented as
a Haskell array r) and a list of values xs:

sumprod j i r [] - 0
sumprod j i r (x:xs) I (j==i) = sumprod (j+1) i r (x:xs)

| otherwise = y*r!j + sumprod (j+1) i r ys

Each object needs to communicate with all the other objects so a function
others is defined. The function all allows the access to abs(x-x') from all
the objects. The transformation can now be written as:

others x = [ y I y <- [1..wsetsize] , y /= x]

all = [1..wsetsize]

jacobi ((row,bi,x), g) = ((row,bi,x>), g')
where x ' = - ((sumprod 1 coord row x<S(others coord) )-bi)

/row!coord
g' = maximum (abs (x-x'))@all
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382 Applications of Supercomputers in Engineering

terminate g = (g < threshold)

init = ( ...initial values at point coord..., threshold-*-!)

problem = it$ terminate jacobi init

where the function maximum returns the maximum element in a list.

The second method is the Gauss-Seidel relaxation which computes the
new value X{(t + 1) using the new values Xj(t -f 1) for j < i and the old values
Xj(t) for j > i as follows:

-1

Now, the communication pattern is different as the values imported from
the right are different from the values imported from the left. Therefore, two
new functions left and right are introduced. The Gauss-Seidel transforma-
tion can now be written as:

left x = [ y I y <- [1..x-1] ]

right x = [ y | y <- [x+1..wsetsize] ]

gaussseidel ((column,bi,x), g) = ((column,bi,x'), g')
where x' = - (1/column!coord)

*( (sumprod 1 coord column x'(9(left coord ))
+(sumprod (coord+1) coord column x@(right coord))
-bi)

g' = maximum (abs (x-x'))@all

problem = it$ terminate gaussseidel init

Solving Laplace's equation on a square: The iterative methods described can
be extended to equations with more than one dimension. These equations
generally arise from from a physical problem in two or three dimensions which
can be described using a set of partial differential equations. In this example,
the Jacobi iterative method is used to solve Laplace's equation on a square,
whose solution is given by the following equation:
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Applications of Supercomputers in Engineering 383

Given a matrix of discrete values, a new value is computed after each
iteration. This value is the average of the 4-neighbours' values. As before, the
algorithm stops when the difference between the old value and the new one at
every point is less than some tolerance.

The objects are arranged into an n x n grid, n being considered as the size
of the set. Each object is uniquely identified by its row-column coordinates
(ij) where 1 < i, j < n. The state of each object consists of one variable
only, which is the value of the corresponding point. The maximum difference
between two successive values in all the grid is kept as a global variable.

Each object that is not on the border needs values from its North, East,
West, and South neighbours, so a function news as well as a predicate function
border are defined. Communication is also needed to collect all differences
between two successive values in order to compute the global value. Therefore
a function interior which returns the coordinates of all the objects (except
those on the border) is defined. Next, the transformation laplacetransf
that should be applied between two iteration steps is defined. Finally, the
last components to be defined are the initial state and global values, and the
termination condition.

news (i,j) = [ (i,j-l),(i+l,j) ,(i-l,j), (i,j + U 3

border (i,j) = or [ (i==l) , (j==D , (i==wsetsize), (j==wsetsize)]

interior = [ (i,j) | i <- [2..wsetsize-1] , j <- [2..wsetsize-1] ]

laplacetransf (v , g) = ( V , g' )
where

v' = if not (border coord)
then (sum (+) vQ(news coord)) / 4
else v

g' = maximum abs(v-v')®interior

tolerance = ... constant ...

init = ( ... to be defined for object coord ... , (tolerance + 1))

terminate g = (g < tolerance)

laplace = sit$ terminate laplacetransf init

CONSTRUCTING THE PARALLEL PROGRAM

Static iterative transformation algorithms show a great deal of locality so they
are particularly suitable for distributed memory architectures. We first as-
sume that the architecture has as many processor/memory pairs as there are

                                                Transactions on Information and Communications Technologies vol 3,  © 1993 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



384 Applications of Supercomputers in Engineering

objects in the problem, and that the physical interconnection network matches
exactly the logical communication pattern. We also assume that there is a pro-
cessor called the host that synchronises the iteration steps in the algorithm and
handles the global data.

Parallel evaluation model

The abstract parallel evaluation model used in the parallel program is based on
graph reduction[l, 15], which is a simple demand driven model of computation
suitable for functional languages. In graph reduction, a program is represented
by a graph of expressions and the execution of this program consists of reduc-
ing the corresponding graph until the normal form, i.e. the result, is reached.
This process may be carried out in parallel since any subgraph can be reduced
independently from the others by a parallel task. A task is to executed by a
reduction agent, which corresponds to a processor/memory pair. Examples of
experimental parallel graph reduction machines for distributed memory archi-
tectures include the HDG-machine[ll] and PAM[13].

Synchronisation is achieved entirely through the graph. Any node being
evaluated by a task is blocked until it is overwritten by the result. Any task
attempting to read the value of a blocked node is suspended and reawakened
only when the evaluation of the node is completed. In general, a task creates
parallel subtasks so the run-time system is in charge of dynamically allocating
tasks to reduction agents. A reduction agent has an active tasks queue from
which it selects the next task to be executed. There is a suspended tasks
pool which contains the tasks that cannot proceed until some value becomes
available. In our case, no tasks are dynamically generated so each reduction
agent has a fixed number of tasks between its active tasks queue and the
suspended tasks pool.

Parallel and communication routines

For our purpose, we assume that the following special functions are available:

• parlet v=e in e': a local task that forces the evaluation of the expression
e is sparked. Its value is later bound to the variable v. The parent task
continues evaluating the expression e''.

• request(d, e) : requests from destination d the value of the expression e,
whose the value is returned as the result of the function call.

• update(d, e, i): sends an update message to destination d containing the
value e for the appropriate slot in the input array i (see below). This
function is always executed for its effect rather than its result which is
generally assigned to a dummy variable.

• broadcast(e, i): broadcasts the value of e to all objects, overwriting the
variable i. If a list all yields all possible coordinates in the system,
broadcast(e^i) is equivalent to map(\d —> update(d,e,i}}all.
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Applications of Supercomputers in Engineering 385

• wait(dest) : takes a list of destinations, allocates an input array where
every slot corresponds to a destination. An input array is marked as
blocked with a counter equal to its size. On receiving an update message
for that particular array, the slot corresponding to the source of the
update packet is updated with the expression contained in the update
packet and the counter is decremented. When the counter reaches 0, the
array is converted into a list and its status becomes evaluated so that
any task waiting for its value is reactivated.

The P transformation

The aim is to produce a parallel program which assumes that each reduction
agent is in charge of an object. Therefore, each reduction agent can be iden-
tified with the same coordinates as the object it holds and communication
between objects occurs between the corresponding reduction agents. The P
transformation transforms each transformation transf into a version transfp
with the local transformation running on every reduction agent and the global
transformation running on the host. In this paper, we will describe two ver-
sions of the P transformation: the request-update transformation Pi and the
update-only transformation %• These are now described in turn.

The request-update transformation PI\ This first transformation removes ref-
erences to external variables lists and replaces them by a variable name. An
internal task is created (using a parlet statement) which allocates an input ar-
ray and sends request messages to the list of destinations specified. When the
other end receives a request message, it sends an update message containing
the value of the expression requested and the address of the input array. If the
main task tries to access the value of the variable before all its values have ar-
rived, it is suspended. When all the slots of the input array have been updated,
the array is converted into a list and the suspended task is reactivated.

transf (s,g) = (s',g')
where

Itransfp s — s'
where

s' = ...
parlet V{ = map(\x —> request(x,e\)} dest
in ...V{ ...

gtransfp g = g'
where

                                                Transactions on Information and Communications Technologies vol 3,  © 1993 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



386 Applications of Supercomputers in Engineering

where V{ is a unique variable name. The same transformation is applied for
external expression lists contained in the host's global cycle function:

transf(s,g) =

Itransfp s =

gtransfp g =

where

s'
where

s' =
9'
where

g'=
parlet V{ — map (Xx — > request(x,e<i)} dest

To avoid objects requesting global variables, these variables are broad-
casted by the host in advance. Therefore, a parlet declaration containing a
broadcast operation is added into the global cycle.

where
s' =

Itransfp s

gtransfp (. . .<?;. ..)

= s'
where

s' = parlet Vi = wait([host])
in .. .(head t\)...

= 9'
where

g' = parlet d = broadcast(gi,Vi)
in e<2

where v» is also a unique variable name and d a dummy variable. The variable
gi should not have been broadcasted before in another parlet statement. The
variable V{ is an input array with one value only which is marked as blocked
by the wait procedure. The broadcast generated by the host will update the
input array's slot that corresponds to the host.

There are three problems with this transformation: Firstly, the host may
broadcast some values which are not needed by all the objects. Secondly,
during a local communication, a request message is sent just before the value
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Applications of Supercomputers in Engineering 387

is needed causing a task suspension which involves expensive context switching
and queue maintenance overheads. Often, it is possible to request the values
well in advance (e.g. at the start of the cycle). Thirdly, as all reduction
agents are executing the same task, it is often possible to predict the local
data requirements of an object. This means that request messages between
neighbours can be eliminated by generating update messages in advance. The
next program transformation addresses the last two problems.

The update-only transformation %: Often, if an object is expected to request
the value of an expression e from a set of input neighbours dest, then this
processor is likely to send the value of the expression e (computed locally) to a
set of output neighbours dest'. Therefore, update messages instead of request
messages can be generated prior to starting the iteration cycle. This trans-
formation is not always applicable because the set of output neighbours dest'
cannot always be statically determined, mostly due to boundary conditions. In
addition, all the objects do not have the same the same data requirements so a
predicate update? is needed to distinguish between the objects that participate
in the update and those which do not need to send update messages at all,

Therefore, the update-only transformation % can only be applied to an
external variable list if the corresponding inverse list dest' and the predicate
update? have been determined. Automatically determining these parameters is
still being investigated. We will only show how the transformation uses them
to generate update messages. If the external expression list is present in the
local cycle, the % program transformation works as follows:

where

Itransfp s = s'
where
s' = parlet d =

if (update? coord]
then map (\x — » update(x,ei,Vi})

parlet V{ = wait(dest)
in
... V{ ...

gtransf? g - g'
where
g' = ?2

where Vi is a unique variable name and d a dummy variable. If the exter-
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388 Applications of Supercomputers in Engineering

nal expression list occurs in the global cycle, only its corresponding predicate
updatep is needed by the % transformation.

transf(s,g) =
where

s'
where

s' = parlet d — if (updatep coord]
then update(host,e2,Vi)

Itransfp s =

in e\
gtransfp g = g'

where
g' = parlet V{ — wait(dest)

in . . . Vi . . .

Example: Deriving the parallel version of Laplace's problem

Considering Laplace's problem, there are two external lists in the transforma-
tion laplacetransf. To the first list v®(news coord) corresponds a predicate
updatep which is always true as all the objects send update messages. The dif-
ficulty is to determine dest' which is the inverse of the list of destinations (news
coord) in the presence of boundary conditions. By hand, we can determine
dest ' = (news' coord) where:

news' (i,j) = (if (i/=l) then [((i-l),j)] else [])++
(if (i/=wsetsize) then [((i+l),j)] else [])++
(if (j/=l) then [(i,(j-l))] else [])++
(if (j/=wsetsize) then [(i,(j+1))] else [])

As the second external expression list abs (v-v') ©interior occurs in the
host's cycle, all is needed is the predicate updatep. Following the argument
that only objects not on the border need to send abs (v-v') to the host, this
predicate is equal to coord ' in' interior where the function in returns true
only if coord is in the list interior. The transformation laplacetransf p can
now be expressed with update-only messages (transformation %):

= v'llaplacetransfp v
where

v' = parlet dl = if true
then map (\x -> update(x,v,y))
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Applications of Supercomputers in Engineering 389

(news' coord)
else 0

d2 = if (coord 'in' interior)
then update(host,abs(v-v'),z)
else 0

y = wait(news coord)
in

if not(border coord)
then (foldrl (+) y) / 4
else v

glaplacetransfp g = g'
where

parlet z = wait(interior)
in
g' = maximum z

THE RUN-TIME SYSTEM

Assuming that the P transformation has derived the local and global trans-
formations, the next stage consists of organising the run-time system based
around an underlying parallel graph reduction machine. The run-time system
comprises a set of reduction agents that implement the local transformations
and a host that implements the global transformation.

During one iteration step, each reduction agent executes a main task
which corresponds to the local cycle (left hand side of the transformation) and
a communication task for every parlet statement. Here is a brief description of
how a reduction agent operates:

step 1 : initialise the state
step 2 : execute the local cycle Itransfp. During execution, spark a local task for

every parlet statement.
step 3 : wait for a signal from the host, then stop or repeat step 2 depending on

the value of the signal.

As in the reduction agents, the host runs a main task which corresponds to
the global cycle and a communication task for every parlet statement. During
execution, the main steps executed are:

step 1 : initialise the global variables
step 2 : execute the global cycle gtransfp. During execution, spark a local task for

every parlet statement.
step 3 : when all reduction agents have finished executing their cycle, evaluate the

expression (terminate g). If the result is false, broadcast a signal to end the
computation. Otherwise, broadcast a signal to carry on and repeat step2.
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390 Applications of Supercomputers in Engineering

We omit to describe how the results are collected. For example, when
receiving the signal to end, all the reduction agents send their final state (or
part of it) to the host.

MAPPING THE PROBLEM ON A PHYSICAL ARCHITECTURE

The *P transformation assumed an architecture with an infinite number of pro-
cessors. The next step in the transformation system is to adapt the parallel
program to a specific physical architecture. We assume that q objects of co-
ordinates coordi ... coordq, with states Si ... 5^, are mapped on a reduction
agent of coordinates pcoord, and that there is a function cmap which converts
logical coordinates into physical coordinates. These assumptions are made by
a mapping module in the system.

The program produced by the M transformation assumes that each re-
duction agent will support q objects and their communication tasks. Any
destination address d for an update or a request message is converted into a
physical address (cmap d}. Communication between virtual processes located
on the same processor will just consist of a memory transfer between two
variables.

PROJECT STATUS

We are currently implementing a Paradigm-Oriented Parallel programming
Environment (POPE) for SIT algorithms. This environment consists of sev-
eral transformation modules, each of which implementing one of the transfor-
mation schemes described in this paper. Direct interaction with the user will
be provided at different levels. First, the user will be allowed to change his
original specification after testing it using the sequential version produced by
the module S. Second the user can assist the mapping transformation by pro-
viding the mapping function. This function is used by the M transformation
module to produce the parallel version of the program. The transformation
system is based on the Glasgow Haskell Compiler which generates C code [14]
but the concurrency aspects are managed by a suitable inclusion of calls to
PVM (Parallel Virtual Machine [2]) C routines. The use of C and PVM en-
sures instant portability onto a variety of architectures ranging from a network
of workstations running under UNIX to a dedicated parallel machine such as
a multi-transputer system.

RELATED WORK

Some application-specific languages for SIT type of computations have been
proposed, such as in molecular dynamics simulation [6], numerical analysis [3]
and image processing. Although these packages have lot in common in terms of
how to organise the data, neighbourhood communication, locality, and dealing
with edge conditions, there have not been many attempts in designing a generic
environment in which most SIT applications could be developed. The only
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system we are aware of is the GRIDS programming environment [18] which is
based on the imperative paradigm.

On the functional programming side, the proposed notation is close to
Hudak's para-functional programming [8]. The "paradigm-oriented" approach
is related of Cole's work on skeletons [4]. Paradigm-oriented implementations
have been suggested for Divide-and-Conquer problems [15,16] and process net-
works [10]. Process networks could be considered as a more general form than
SIT algorithms because data objects are functions communicating with other
objects using streams. However, process networks do not naturally support
synchronisation, broadcasting and reduction. One of Darlington's skeletons
[5] is closely related to ours but there are no suggested transformation rules
from a specification to parallel code.

CONCLUSION

In this paper, we advocated a "paradigm-oriented" approach to the design
and implementation of parallel functional programs. As a case study, a struc-
ture that allows a user to design iterative transformation algorithms has been
defined. Compared to an implementation based on implicit parallelism, our
approach ensures not only that a program contains sufficient parallelism but
also provides crucial information for the run-time system about the nature of
this parallelism. For example, the run-time system is able to statically allocate
tasks to processors, partition the data in every processor's local store, and even
generate update messages in advance.

Compared to an implementation based on ezp/zczf poro/Wism, the use of
a parallel paradigm to express an algorithm makes it clearer, easier to modify,
and allows for formal analysis and transformation into a variety of forms (se-
quential, parallel or adapted to a particular machine) thus making it highly
portable. The drawback is that a transformation-based implementation can-
not compete in efficiency terms. Each processor in the proposed system runs
concurrently a main task and several update tasks and this incur an extra sus-
pension/reactivation and context switching overheads which could be avoided
if "straight-line" code with explicit communication primitives is used. It is
hoped that this system would be useful for applications where portability,
maintenance and a low development cost are as much important as efficiency.

REFERENCES

[I] D.I. Bevan et al., 'Design principles of a distributed memory architecture for a
parallel graph reduction', The Computer Journal, 32(5), pp. 461-469, 1989.

[2] A. Beguelin et al., 'A User's Guide to PVM Parallel Virtual Machine', Oak
Ridge National Laboratory (USA), July 1991.

[3] J.M. Boyle et al, 'The construction of numerical mathematical software for the
AMT DAP by program transformation', In Parallel Processing : CONPAR 92

                                                Transactions on Information and Communications Technologies vol 3,  © 1993 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



392 Applications of Supercomputers in Engineering

- VAPP 7, L. Bouge et al. (Eds.), Lecture Notes in Computer Science 634, pp.
761-767, Sept. 1992.

[4] M. Cole, Algorithmic skeletons : a structured approach to the management of
parallel computation, Research Monographs in Parallel and Distributed Com-
puting, Pitman, London, 1989.

[5] J. Darlington et al, 'Parallel Programming Using Skeleton Functions', to ap-
pear in PARLE'93, Munich, June 1993.

[6] P.A.J. Hilbers and K. Esselink, 'Parallel Molecular Dynamics', In Parallel Com-
puting : From Theory to Sound Practice, W. Joosen and E. Milgrom (Eds),
IOS Press, pp. 288-299, 1992.

[7] W.D. Hillis and G. L. Steele, 'Data Parallel Algorithms', Communications of
fAe v4CM, Vol 29, pp. 1170-1183, December 1986.

[8] P. Hudak, 'Para-Functional Programming in Haskell', In Parallel Functional
Languages and Compilers, B.K. Szymanski (Ed.), ACM Press, 1991, pp. 159-
196.

[9] P. Hudak et aL, 'Report on the Programming Language Haskell', SIGPLAN
AWceg, 27(5), May 1992.

[10] P. Kelly, Functional Programming for Loosely-coupled Multiprocessors, Re-
search Monographs in Parallel and Distributed Computing, Pitman, London,
1989.

[11] H. Kingdon, D. Lester and G.L. Burn, 'The HDG-machine, a highly distributed
graph reducer for a transputer network', Technical report 123, GEC Hirst Re-
search Centre, March 1989.

[12] H.T. Kung, 'Computational models for parallel computers', In Scientific Appli-
cations of Multiprocessors, R.J. Elliott and C.A.R. Hoare (Eds), Prentice Hall
International, 1989, pp. 1-15.

[13] R. Loogen et al., 'Distributed implementation of programmed graph reduc-
tion', In Proc. PAAIE W, June 1989, Odijk E. et al (Eds), Lecture Notes in
Computer Science 365, pp. 136-157.

[14] W. Partain, 'The Glasgow Haskell Compiler', The GRASP project, Department
of Computer Science, University of Glasgow, 1992.

[15] F.A. Rabhi and G.A. Manson, 'Experiments with a transputer-based parallel
graph reduction machine', Concurrency : Practice and Experience, Vol 3 (4),
Aug. 1991, pp. 413-422.

[16] F.A. Rabhi and G.A. Manson, 'Divide-and-Conquer and Parallel Graph Re-
duction', Paro//e/ Comp%Zm</, vol 17, 1991, pp. 189-205.

[17] F.A. Rabhi, 'Exploiting parallelism in functional languages: a "paradigm-
oriented" approach', In Workshop on Abstract Machine Models for Highly Par-
'allel Computers, Leeds, April 1993.

[18] A. Reuter, U. Geuder, M. Hardtner, B. Worner and R. Zink, 'GRIDS User's
Guide', Report 4/93, University of Stuttgart, 1993.

                                                Transactions on Information and Communications Technologies vol 3,  © 1993 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 


