
RobotSIM: An environment for obstacle

avoidance control based on a potential field

method

G. Gini & G.P. Picco

Department of Electronics and Information,

Politecnico di Milano, Italy

ABSTRACT

We present a simulation system that moves amobile robot in a world cluttered
with obstacles using a potential field function. Following the method proposed
by Bruce Krogh we take into account if the current position of the controlled
system as well as its current velocity. The method relies on a double strategy for
control: a time-optimal control, based on the bang-bang control, is performed in
absence of obstacles, while a potential field control, enriched with some
heuristics, is used when obstacles are present. The mathematical formulation is
made in such a way that the first control strategy can be regarded as a subclass of
the more general second strategy.

1. INTRODUCTION

In order to achieve the ultimate goal of creating autonomous robots, Robotics
Science has to face with the basic problem of controlling robot motion.
Unfortunately, this kind of task belongs to the class of problems we can
efficiently perform as humans, but we can hardly take a robot to do.

The Obstacle Avoidance Control (OAC) problem deals with these issues. In
particular, we can state the basic motion planning problem as in [3] "Given an
initial position and orientation and a goal position and orientation of the robot in
the workspace, generate a path specifying a continuous sequence of positionsand
orientations of the robot avoiding contact with the obstacles, starting at the initial
position and orientation, and terminating at the goal position and orientation.
Report failure if no such path exists."

This problem has been approached in a variety of ways. Following [2] we
have three major classes:

- hypothesis and trial
- free space
- penalty functions

The first two classes generally require a huge amount of computational
resources because of the non-trivial mathematics found in the algorithms, and
moreover they need an a-priori description of the workspace in order to plan
collision-free paths: so they are generally not suitable for real-time robot control.

By converse, the penalty function approach starts from another perspective;
trajectory computation is not obtained handling the whole set of obstacles by
means of functions that output a path, instead every obstacle has features that
drive the robot trough a safe path. We can look at this approach as a shift from a

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

480 Artificial Intelligence in Engineering

centralized point of view to a distributed point of view, from global methods to
local methods.
Among penalty function approaches, perhaps the most significant are potential

field methods that rely on a basic idea borrowed from Classical Mechanics: think
about associating mathematically defined force fields to relevant entities, i.e.
obstacles and goal points In particular, an attractive force field is associated to
goal point and repulsive force fields to obstacles. If we suppose that our robot is
capable of feeling the sum of this forces, and of reacting to follow the minimum
energy state, we own a system that is automatically driven by obstacles. We
do not need ana-priori knowledge of world, because now we can compute the
current forces configuration at every step, performing the appropriate action.

Several mathematical definitions of such force field have been proposed in
literature, through the use of the notion of potential: perhaps the most known,
and the only one implemented on a real robot manipulator system, has been
proposed by Khatib[4j.

Our system is a robot motion simulator, i.e. given a description of the
workspace and initial and final positions for the robot, it shows a collision-free
path through obstacles. It is based on a potential field approach slightly different
from the traditional approach found in Khatib. Traditional potential field methods
rely on potential functions generating a repulsive force inversely proportional to
the distance from obstacle. This is a simple but not satisfying solution for many
cases: for example, when the system is traveling away from the obstacle but very
near to it, a high repulsive force is generated without need.

This drawback is eliminated by the method proposed by Bruce Krogh in [5]:
it takes into account for the potential definition the current position of the
controlled system as well as its current velocity. This can be regarded as a shift
from a static view of the problem to a dynamic one. The method relies on a
double strategy for control: a time-optimal control is performed in absence of
obstacles, based on the bang-bang control described in [1], while a potential field
control, enriched with some heuristics, is used when obstacles are present. The
mathematical formulation is made in such a way that the first control strategy can
be regarded as a subclass of the more general second strategy. A major drawback
of potential field methods is the local minima problem, i.e. the system finds a
solution (energy minimum in the physical analogy) that is not the desired
solution (absolute energy minimum). Krogh's method offers heuristics to get
the solution, but this is left unbounded from the rest of the method, allowing the
user to substitute the proposed heuristic with a better strategy, if found.

We think Krogh's method is suitable for both mobile robots and
manipulators, assuming the correct approximation, and it supports sensors
integration and real-time control. Moreover, we have originally reinterpreted
Krogh's method, developing a simulator that is constructed in such a way that
other potential field methods can be put in the environment with few effort.

2. OBSTACLE AVOIDANCE CONTROL

The OAC finds its place among the problems to be solved to obtain
autonomous robots able to accomplish tasks and to manage uncertainty and
imprecision. Beside being an interesting study, autonomous robots will find a
place in many practical tasks, for instance in dangerous environments. Motion
planning is an important part in the autonomy of robots, because the ability to
move in a safe and intelligent way is recognized as a fundamental ability. OAC is
a big part of robot motion planning, and deals with the problem of moving the
robot among obstacles to reach in a safe way its destination.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 48i

For autonomous robots the problem is getting computations in a short time
and managing an unknown world. Here good candidates are local methods, and
in particular the potential field methods. The basic idea is to associate forces to
obstacles and to the goal: repulsive forces to obstacles, attractive forces to the
goal position, so the robot can be attracted by its destination while being repulsed
away from obstacles. In this formalization OAC can be solved with methods
borrowed from physics.

The main drawback of the potential field methods is the existence of local
minima. In those positions the robot is unable to continue its trajectory to the
goal. The use of local knowledge, on the other end, makes the system able to
take decisions in a short time on a reduced information. Usually potential field
methods transform the robot into a point, situated in the robot hand or in the
gravity center of the mobile robot. This assumption semplifies the computations
and is often adequate in mobile robots.

2 1 - BASIC NOTATIONS IN ROBOTSIM
We formulate now the OAC problem as managed by Robotsim. We make the

following assumptions:
• we consider 2D problems in a plane;
• the robot is a point;
• obstacles are only convex;
. we control the acceleration u, where ||u|<a holds, and where a is the
maximum acceleration we can get from the control system.

. the robot starts and stops with null velocities;

. we do not introduce costs, and we do not compute optimum control.
RobotSIM uses another approximation on the obstacles: they can be only of

rectangular shape, and have any position and orientation. So the real shape of the
obstacles is ignored, and we only make use of the approximating rectangle.

The strategy followed is choosing in any moment the control to avoid near
obstacles. Choosing the control time by time is useful because the system
does not need a knowledge of the world. So this strategy can find local solutions,
because it is unable to look ahead, and remain there without getting out. For this
reason we have to add heuristics to guide the system out of local minima.

The basis of the method consists in associating force fields (vectors) to any
object in the world. If c is the acceleration vector, the equation describing the

force fields is:

where c is the acceleration vector, CQ is the sum of the repulsive forces of the
obstacles, Cg is the attractive force of the goal.

This is the basic idea of the 'impedance control' and is used by other
approaches based on 'penalty function'. The potential fields, introduced in
Physics, are defined as inversely proportional to the distance from the obstacle:
so the potential can be used as a 'penalty function', that grows near the obstacle
and reduces far away. We use this definition also to define the repulsive vector,
that needs some more care because we want to take into account more than the
nearest obstacle. As proposed in Krogh we define instead a 'Generalized
Potential Field' (GPF). This provides a function using the distance from the
obstacle as well as the velocity of the robot toward the obstacle; the^ function
should be null when the robot is not moving towards obstacles. The definition of
this potential is given in the case of the ideal plane. The GPF is defined for every
obstacle and contributes to the definition of the repulsive vector.

Let us call:

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

482 Artificial Intelligence in Engineering

A{: the obstacle for which we calculate the GPF
x: the cartesian coordinates of the robot
PJ: the point of Aj nearest to x
d{: the distance of p; from x
v;: the module of the velocity component along the segment x - p;
The GPF depends on dj and v;, and in some way also from the maximum

acceleration. It is different from 0 only if vpO.
At time tQ with velocity vj we want to compute the time needed to obtain the

null velocity of the robot. The minimum and the maximum times are called

'minimum avoidance time' Tj and 'maximum avoidance time" Tj

' a ' v,(t.)
The second definition is based on the idea that the robot travels for d| and

goes back to the departure with null velocity. These definitions are based on
classic cinematics.

x = XQ + vt v = VQ + at

We can define the 'reserve avoidance time' as the difference between %; and
Tj. The GPF is defined as the inverse of the reserve avoidance time:

0 ifv. <0

The GPF goes to infinity near the obstacle, and is 0 when no collisions are
detected; moreover it grows also with the velocity. The GPF is undefined when
the maximum avoidance time is less than the minimum avoidance time, because
in this case no control is able to avoid the obstacle.

The repulsive vector Cg, generated by N obstacles, is the gradient of GPF
with respect to the position:

0 ifv. SO

V;
N

=
The GPF is computed by Krogh using all the obstacles that are visible from

the current position. We should now define the attractive component of the
acceleration, in such a way that the time to go from departure to goal is minimum
when no obstacles are found. In this case we can use the bang-bang control [1],
that makes use of a double integrator.

2.2 CONTROL WITHOUT OBSTACLES
2.2.1 Classic formulation

The double integrator model is used to represent the movement of objects in a
world without friction, where the motion equations are described through:

The transfer function is:

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 483

Let be u(t), defined as u(t)=F(t)/m, the control; the Newton law becomes:

ym = u(
We represent the system as state variables:

and we get:

The control should be constrained; according to [l]||u(f/)|| < 1 , according to
[4] any predefined value is acceptable. The control problem is so stated:

Given the system

.
find a control to force the system from any state to the origin(0,0) in the

minimum time.
The optimal control exists and is unique. Only 4 configurations of the control

satisfy the requirements:
HU + 1},{-1,+ 1}, { + !,-!}

Krogh uses those results to give his control law:
an if condition I

u * (v d } =
^ ' if condition II

(where ng is the versor from current position to the goal)
According to [1] the optimum time is:

x,+V4xj+2x^ ifxi >-7X21x2!

' " ifx <—LxJxJ

generalized in Krogh as:

IxJ if Xj =-

a
To better assess the method we have also provided and intuitive formulation

of the problem.

2.2.2 Intuitive formulation
We assume that the acceleration given is always the maximum; u* is:

f an (centripetal acceleration)
u * (v d) = <

*' * l^-ang (centrifugal acceleration)

Here the acceleration is directed from the point to the goal: the control is a
force field situated in the goal, with a direction centripetal if we want to reach the
goal, centrifugal if we want to go away.
We define:
• dp, distance from current position to the goal;6

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

484 Artificial Intelligence in Engineering

• df, stop distance, df = —2- , distance necessary to stop the robot moving at

velocity Vg.
We set a reference system in the current robot position, with the x axis

directed to the goal. Suppose to be at a distance dg from the goal and to travel
toward it with velocity Vg, so that in the reference Vg>0.

We distinguish 3 cases:

In this case it is possible to reach the goal and to stop using the centrifugal
control, which will stop the robot progressively reducing its velocity.

In this case we have to accelerate the robot to augment df, until we reach the
case 1. This is done using the centripetal control.
3)df>dg
This is the most complicated, because in this case the robot velocity is so high

that it is impossibile to have zero velocity in the goal. We start with a centripetal
control, and the robot is accelerated toward the goal. When the goal has been
surpassed, the centripetal field attracts the robot to the goal but the velocity sends
it away. In this case the centripetal field stops the robot and moves it back to the
goal. If the only law were the application of the centripetal law, the robot would
bounce around the goal. But ata point we will have df = dg , so from this point
we change the field to centrifugal, and we are able to reduce the robot velocity to
arrive in the goal with null velocity.

In a similar way we reason for Vg < 0.
Concluding, the bang-bang control is characterized by:
• the controlled variable can be interpreted as an acceleration field;
• the first field applied is the centripetal, then the centrifugal;
• the sign is changed in correspondance with the inversion condition df-

*g-
We are able now to compute the distance to stop and the time T*, as illustrated

in Krogh.
Computing the distance to stop

At the final time t = tf, we want vf̂ al = 0; at the initial time x% = df. From the
first condition we have:

From the second condition:

v?
Substituting we get of, = —2-.

Computing T*
If df>dg, T* is the sum of t% and t], used to travel died? respectively. If Vp

is the robot velocity in P, and v<? the positive initial velocity, for the first part we
have

v, =v,+ar 4 =y + 1 err-,

and for the second :

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 485

(where the acceleration has a different sign).
Since

* a a
we get

We resolve with respect tot%:

v*

2a

^ -v5 -
- a a

v'
existence condition: d^ > -7— <=> d, < d^ hypothesis

2.3. CONTROL WITH OBSTACLES
We define:
d%: distance between the current position and the goal
n%: versor from the current position to the goal
Og: versor perpendicular to ng according to the right-hand rule
Vg: proiection of the velocity on ng
VQ: projection of the velocity on Og
The attractive vector is:

We make the hypothesis that without obstacles the control is the scalar
product between maximum acceleration and the direction versor.

. we define an acceleration versor with direction and versus as the
acceleration vector

. the control u is the scalar product between the maximum acceleration and
this versor

In fact we compute the repulsive and attractive vectors using the module; after
that the module is no more used to control the system.

In the control we combine the direction and versus of the control u (obtained
from the acceleration) with the maximum available acceleration, to minimize the
execution time. So the control is:

If the attraction and repulsion versors are co-linear, with same module and
opposite versus, the resulting acceleration vector is null and the system stops
without reaching the goal.

To avoid this situation Krogh temporarly sets as the goal a subgoal
determined by the edge of the obstacle lying between x and Xg which is closest to

Xa. It means that:
. we consider the obstacle nearest to the current position,;

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

486 Artificial Intelligence in Engineering

• we analyze the 2 'edges' of this obstacle, intersecting the perimeter of the
obstacle with one of the tangents to the obstacle going through the current
point.

• the subgoal is the edge nearer to the real goal.
This heuristics is modified by the edge factor , set by the user in RobotSIM,

which guarantees a minimum distance from the obstacle.
The subgoal is defined as:

where x'g is the subgoal, eg is the edge point, and s^ is the direction normal to
the obstacle and computed from the edge point. The control algorithm verifies at
every iteration the obstacles; in presence of obstacles it sets a subgoal and
produces the cinematic values.

3. ENVIRONMENT DESCRIPTION

RobotSIM is actually made of two applications:
• RobotSIM. This is the mJn application, containing the real simulation

environment.
• RobotSIM Viewer. This application is used to allow the user to

compare the graphical results of many simulations in a full windowed
environment. This is because RobotSIM allows the execution and displaying of
only one simulation at a time.

Both applications run under Microsoft Windows 3.x, taking great advantage
of the graphical and interactive features of such a system. In the sequel, we will
refer to main application RobotSIM, if not otherwise specified.

After launching RobotSIM, the following windows are displayed:
Main window. This window carries the menu driving the whole

application.
Graphic output window. During the simulation execution, this

window displays the collision-free path among obstacles. Moreover, it is used to
interactively describe the workspace configuration.

• Numerical output window. During the simulation execution this
window displays the current values of output variables. It is blank during the
workspace definition phase.

Auxiliary window. This window is used to display the workspace
coordinates currently pointed by mouse.

The graphical output window plays a central role in the application, since the
real-time trajectory tracing is the most impressive mean to display the simulation
results. Its implementation is quite sophisticated, since it realizes the mapping
from the Cartesian reference to the display reference, providing scaling and
scrolling. Obviously, user interaction is not limited to windows handling: in the
following we examine the various kinds of interaction the user is allowed to
perform.

3.1 WORKSPACE DESCRIPTION
When RobotSIM is started it comes up with a default workspace description,

containing only a start and a goal point, with no obstacle. Serious applications
surely will involve the description of a more complex workspace including
obstacles, and possibly with a different position of the start and goal point
("special points" in the sequel). RobotSIM offers two options to do this:

Mouse interaction. The user can move the special points and the
obstacles on the screen by clicking & dragging with the mouse. Moreover,

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 487

obstacles' dimensions can be modified by clicking & dragging on obstacles'
vertexes or sides, with real-time visual feedback. This is intended for gross
positioning and dimensioning, due to the intrinsic low resolution of mouse
and graphical device.

. Form filling. The user can fill in the right numeric values of coordinates in
specifying position and/or obstacle dimensions. The object whose features
are under update can be selected by mouse or by menu selection. This
method is intended for fine positioning and dimensioning, possibly using
data retrieved by on-the-field measurement.

3.2 SIMULATION PARAMETERS
Krogh method relies on the definition of values for some characteristic

parameters that rule or tune the simulation behavior. Parameters' definition is
performed through menu access: every parameter owns a dedicated dialog box
accessible from the menu item "Parameters", where the real numeric value can be
filled in both writing the number in the edit field or clicking on the scroll bar
placed on the right. The first method allows precise input to be performed, while
the second is better suitable for quick insertion of sample values. Moreover,
another dialog box is provided, accessible through the "Tune all together"
menu item, whose aim is to allow the global tuning of the simulation keeping all
the parameters under control.

3.3 OUTPUT SELECTION
In addition to graphical and numerical output windows, RobotSIM provides a

third mean to keep track of simulation outputs, namely the log file, which is
constructed while the simulation is run and consists of an ASCH file where the
values of the output variables at each iteration are recorded. The user is allowed
to specify which variables are relevant outputs to keep track of, and the number
of iterations between two similar outputs. This last feature allows to fit the three
kinds of output according to the actual needs: for example, it may be useful to
give a low frequency for the graphical output, since it is computationally
expensive, while keeping a higher frequency for the log file, in order to get a full
numerical image of the simulation execution. The selection of output variables to
monitor affects the file log and the numerical output window.

3.4 STOPPING STRATEGIES
Krogh's method does not specify the strategy followed to stop the

simulation once the goal has been reached. The strategy intrinsic to the method is
checking when the time to be spent in reaching the obstacle is zero.
Nevertheless, this is not really suitable, due to the time sampling performed to
execute the simulation. We did not develop yet a method able to describe goal
reaching assuming time discretization; however, we provide the user with two
different stopping strategies that can be selected by the menu
"SimulationlStopping Options":

Time based. The previously described control is performed, but a
threshold is fixed, specifying the precision degree to be assumed while
performing the check. This threshold varies from simulation to simulation
and possibly has to be rearranged before every execution. Since this method
is quite empirical, setting the right threshold is just a matter of intuition.
Further study will involve the investigation of formal conditions applicable
to this problem.

. Position based. Selecting this option, the control is made in terms of
distance checking with respect to the goal point. No information about
current velocity is investigated, so you can find that the simulation stops

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

488 Artificial Intelligence in Engineering

reporting that the robot is traveling with a somewhat high velocity. The
rationale about this is that it may be desirable to perform robot motion
employing more than one control method, e.g. potential field method for
gross motion and another method for fine motion. Thus, in RobotSIM, the
user is allowed to see simulation results to the point were the latter control
system will take the control.

3.5 FILES
RobotSIM handles the following four kinds of files:
• World description files: used to save workspace descriptions;
• Parameters files: allow the storing of lists of parameters values;
• Log files: used to keep track of numerical values of output variables;
• Simulation files: to store graphical output windows, to be read by the

RobotSIM Viewer.
Note that the first three kind of files are ASCII files and a precise syntax is

defined for their contents, allowing the user to edit them off-line using an editor.

4. IMPLEMENTATION ISSUES

RobotSIM has been developed using Borland Turbo Pascal for Windows
1.0. The source code is about 6,500 lines long, half of this dedicated to user
interface implementation. A considerable effort has been spent to build reliable
and efficient algorithms for the geometrical computations involved in simulation.
In this section we describe the basic algorithms.

4.1 BASE SIMULATION ALGORITHM
The base simulation algorithm is built upon Krogh's work, with the addition

of more controls and refinements to improve efficiency.
Let P be the current robot position, G the goal point, ObstacleSet the set

containing the obstacles in the workspace; the following is the base algorithm
employed in the program:
Initialization
LABEL StartAlgorithm
t—>t+At
P-»P+AP
IF ObstacleSet*0 THEN

Create the list Visiblep containing obstacles visible from P
IF Visiblep?t0 THEN

IF there are obstacles between P and G THEN
Take from Visible^ the obstacle O nearest to P
Computes the vertex of O which is nearest to G
Computes the subgoal employing the edge factor

ELSE SubgoalsG
Computes vectors^ ng and Vg
v—»v+Av
Computes: distance between P and Subgoal, attraction vector Cg,
global repulsion vector Cg, acceleration vector
IF StopCondition=FALSE THEN GOTO StartAlgorithm
ELSE END.
The initialization sets the temporal reference, the initial values for position and

velocity, and performs the first computation of n<r and Og vectors. The repulsion
vector is the sum of all the repulsion vectors generated by each obstacle.
StopCondition contains a check on the simulation termination condition.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 489

4.2 OBSTACLES REPRESENTATION
The algorithms performing geometrical computation on the workspace needs a

uniform representation of obstacles. Note that obstacles are approximated by
rectangles surrounding them, and that these rectangles can have any orientation;
this is a major issue, since Krogh's simulation results involved only obstacles
with sides parallel to reference axes. The minimal representation for obstacles
needs five parameters; the ones we chosed are shown in Fig. 4.1:
. The crosspoint of diagonals. We will call this point obstacle center. Since the

environment works in two dimensions, this point represents two parameters.
Sides dimensions.

. The angle formed by the secondary axis with the x axis of absolute reference.

MainAxis

Angle

Fig. 4.1 Obstacle-related definitions.
A naming is determined for obstacle's vertexes, shown in the figure. The

primary axis'(Main Axis) is parallel to sides QR and TS, while secondary axis is
parallel to QT and RS. This definition of vertexes is necessary to provide a
unique reference for the algorithms operating on obstacles.

Note that if Angle=0, OtherAxis coincide with x axis and MainAxis with y
axis. Theoretically, this representation is sufficient for any obstacle:
nevertheless, due to efficiency reasons, every software object representing an
obstacle carries also a four-vertex representation, which is not minimal since
needs eight parameters, but is more suitable for drawing operations and
transformations.

4.3 DETERMINING THE OBSTACLE NEAREST TO A POINT
The problem of determining which obstacle is nearest to a given point is

central in the execution of the simulation algorithm, as emerging in the previous
section. The check is performed determining the nearest point of each obstacle,

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

490 Artificial Intelligence in Engineering

then ordering consequently obstacles and determining the nearest. Thus, the
problem is shifted to the search of the nearest point of an obstacle to a given
point. We developed an algorithm to solve this problem, that uses multiple
references, shown in Fig. 4.2:
. xOy is the absolute Cartesian reference, in which are defined obstacles' and

special points' positions.
XCY is the Cartesian reference integral with the obstacle, such that

Xs Other Axis and Y=Main Axis.
. X'CY' is the reference with oblique coordinates, integral with the obstacle,

within the algorithm will compute the nearest point.

Fig. 4.2 Reference definitions for nearest point calculation.

The equation ruling trasformations is the following:
f X* = (x- a)cosa + (y - b)sina - cot #((y - b)cosa - (x - a)sina

(y - b)cosa - (x - a)sina

sini)
The searched nearest point can be one of the obstacle's vertexes or can belong

to one of obstacle's sides. The use of oblique coordinates allows the derivation
of simpler mathematical conditions that help in determine which between these
two cases is actually satisfied.
Tables 4.1 and 4.2 show the conditions we found: the first table allows to
determine wheter the nearest point is also a vertex or not, while the second
selects the obstacle's side where the nearest point must lie.
The algorithm can be stated as follows:

Trasformation of P from xOy to X'CY'
Computation of mathematical conditions in Tab. 4.1

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering

IF P satisfies these conditions THEN Neareste{Q,R,S,T}
ELSE

Computation of mathematical conditions in Tab. 4.2
Store the side L=JK satisfying these conditions
Computes N such that NIL and PeN
I-»LnN
IF 16L THEN NearestsI
ELSE

IF PJ<PK THEN Nearest-*!
ELSE Nearest-»K

END
END.

491

X

0

Y

=
0

X'>0

R

X'<0

T

Y'>0
Q

Y'<0
S

Tab. 4.1 Conditions on vertexes.

X

>
0

X

<
0

Y'>0
QR

TQ

Y'<0
RS

TS

Tab. 4.2 Conditions on sides.

4.4 DETERMINING VISIBLE OBSTACLES
As described before, at each iteration the simulation considers only in-sight

obstacles: this is a major feature of the method, since it seems well suited for
sensor integration, and does not require any a-priori knowledge. Visibility is
determined by tracing lines connecting the point P with obstacles' vertexes and
checking mathematical conditions on angles so determined within the Cartesian
reference.

It can be demonstrated that if angles are normalized in the 0-360 interval and
ordered increasingly, the angles corresponding to the "shadowing" vertexes are the
second and the third of the list. Moreover, to an observer placed in P and watching
toward the positive x, the second angle it is always placed at the left of x axis, and
the third at the right.

We based our algorithm on the concept of cone of shadow. We can imagine to
put a light source in P and determine which obstacles are shadowed and which
lighted."The control is performed incrementally: first an object is considered, its
cone of shadow is determined (current cone, denoted by cone lines SL and SR),
then another obstacles is considered and its cone of shadow (new cone, denoted
by cone lines NL and NR) is compared with the previous sample.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

492 Artificial Intelligence in Engineering

..,.•••'''* AH/

A) B)

D)

Fig. 4.3 Visibility conditions.

Some typical situations can occur, showed in Fig. 4.3:
. Situation A). The current cone contains completely the new cone. The

new last obstacle is not visible.
. Situation B) and D). The current cone has intersections with the new

cone, i.e. the new obstacle is partially lighted. Consequently, the current
cone of shadow must be extended.

. Situation C) and E). The two cones have no intersection, i.e. both of
obstacles create shadow.
This check on cone of shadow is repeated taking as current cone the cone of all

the obstacles found creating shadow. Mathematical conditions are based on the
relation "extern to", defined as follows:

If angles are normalized in 0-360 internal: line A is extern to line B to left if
angle coefficient of line A within reference xPy is greater than the one ofB:
by converse, line A is extern to line B to right if angle coefficient of line A
within reference xPy is lower than the one ofB: note that this correspond to
the intuitive notion of extern to, if we suppose to observe the scene in P
watching towards positive x.

Four Boolean conditions can be defined:
. Condi. True if SL is external to NL to left.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 493

. Cond2. True if SR is external to NR to right.

. Cond3. True if SL is external to NR to left.

. Cond4. True if SR is external to NL to right.
Combining these conditions, we define the situations depicted in Fig. 4.3:

A CondiACond2.; B (-Condi)ACond2̂ Cond3.;

C (-Condi)ACond2 A(-Cond3).; D Condi A(-Cond2)ACond3.

E. Condi A(-Cond2)A(-Cond3).

5. SIMULATION EXAMPLES

This section illustrates some simulation results. We have repeated the same
examples reported by Krogh and found the same timing results, though we had
some problem in defining coherent stopping conditions. We simple simulations
to show the effects of parameters changes. If not otherwise specified, the
parameter values used tare the following:

Y = 0.005; e = 10; a = 1; t = 0.1; v%,Vy = 0,0
Fig. 5.1.a shows the simulation result for three obstacles placed between the

starting point (in the lower left corner), and the goal point (in upper right
corner), with the above parameters values. A slight overshoot is present, due to
the intrinsic structure of repulsive and attractive field interactions. Figure S.l.b

shows the results with an increased edge factor 6=20. Since the edge factor is a
sort of safety parameter, this trajectory follows a path less near to obstacles. The

edge factor affects heavily trajectory shape: an edge factor e=40 makes the free
path as in Fig. 5. l.c, which is substantially different. Effects of attraction factor

are illustrated in Fig. S.l.d: here, we set y=0.1 producing a smaller overshoot
and a quicker traveling around obstacles.

Simulations in Figl 5.2 are used to illustrate the effect of other parameters.
Fig. 5.2.a shows the simulation with the standard parameter values: the overall
time employed to move the robot from start to goal is about 40 seconds. Figure
5.2.b is the result of maximum acceleration allowed: with a=3 the trajectory is
quicker, using about 30 seconds to perform traveling, but resulting in greater
overshoot. Figure 5.2.C shows what happens with a non-zero starting velocity:
here the y component of velocity has a module of 10. Note that the basic OAC
problem does not consider the case of a robot starting with non-zero velocity:
nevertheless, this case may be of practical interest when many controls must be
integrated within the system. Moreover, this feature comes for free from the
Krogh method formulation.

REFERENCES

[1] M. Athans and P. L. Falb, Optimal Control, McGraw Hill, 1966
[2] K. Fu, R.C. Gonzalez, C.S.G. Lee, Robotics: Control, Sensing, Vision and
Intelligence, McGraw Hill, 1987.
[3] J. Latombe, Robot Motion Plannig, Kluwer Academic Publishers, 1991.
[4J O. Khatib, Real-Time Obstacle^Avoidance For Robot Manipulator And
Mobile Robots, International Journal of Robotics Research, Vol 5, N 1, 1986
[5] B. Krogh, A Generalized Potential Field Approach To Obstacle Avoidance
Control, SME Conf. Proc. Robotics Research: The Next Five Years and Beyond
1984.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

494 Artificial Intelligence in Engineering

Object*2?

Object*1

ObjccttfO

Fig. 5.1 (a,b) Simulation examples

Object*2/

Object*!

Objcct*0

Fig. 5.1 (c,d) Simulation examples

• ObjecttfO #•

Object*2?

Object*1

Object*0

Object*2?

Object*!

Object*0

. I I
• Object^O

*' ObjecUfO @\

Fig. 5.2 (a,b,c). Simulation for velocity and acceleration parameters.

 Transactions on Information and Communications Technologies vol 1, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

