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Abstract

The rapidly growing need for defining and solving inverse problems has become apparent during
the last two decades in industrial and academic engineering.  Simultaneously with the development
of traditional deterministic methods, new approaches based on methodology from artificial
intelligence appear to have overcome some the limitations of deterministic methods.  In this paper,
an application of a genetic algorithm to solve an Inverse Heat Conduction Problem (IHCP) is
presented.  First, a number of numerical tests have been performed and the results used as a the
basis for understanding how to set up a genetic algorithm for solving such a difficult problem in
the shortest possible time.  In the second step, the genetic algorithm which had been set up was
applied to the evaluation of a quenching test in the area of continuous casting.  The results
presented confirm that the genetic algorithm determined the heat transfer coefficient (HTC) history
and the sensor time constant with a satisfactory level of accuracy and are thus promising for future
applications of genetic algorithms in inverse problems.

                                                Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



1  Introduction

Genetic algorithms are receiving increased attention in the difficult problems of
search optimization and machine learning, and the list of successful solutions has
increased considerably in recent years, Goldberg [4]. Such complex problems
undoubtedly include inverse tasks.  The multi-disciplinary filed of inverse
problems has become on of great interest to many researchers and engineers in
various fields of science and engineering. In recent years, in order to overcome
some of the limitations of deterministic methods, research interest has focused on
different approaches, which are based on the methods of artificial intelligence.
One can find applications of Evolutionary algorithms, Expert systems as well as
Neural networks, Dumek [2].

In this paper, we present the application of GAs to one typical engineering
problem, i.e. the inverse determination of boundary conditions in heat transfer
problems. Beck defined two major groups of inverse problems, Beck [3]:
parameter-specification and functional-specification.  In this problem, thermal
material parameters such as thermal conductivity, thermal capacity and density
can be considered to be unknown in the first group.  For the second group, it is
normal to search for a heat transfer coefficient history or the surface heat flux
history.  In this paper, a search for an unknown heat transfer coefficient history,
based on the given observation of the temperature history at one of the interior
points of a steel plate is presented.  In addition, the actual time constant of the
thermocouple used for the temperature history measurements has to be identified.

In regards to problem definition, GA has been found to be a promising
approach to overcome some of the limitations of the deterministic methods,
which are normally used.  As a stochastic, large-memory dynamic system, which
enables solutions to 'evolve' based on the principle of 'survival of the best',
genetic algorithms can be used to operate on potentially stochastic, non-stationary
problems of infinite variety, and high dimension and complexity, Goldberg [1].
Because of that, GAs or other evolutionary algorithms can reliably solve a range
of inverse problems with sufficient accuracy and speed, or at least can be
involved in the solution when combined with other techniques.  Thus, the results
presented may inspire or help in solving a variety of problems in diverse areas of
inverse problematics.

We start by defining the problem to be solved and briefly reviewing the
principles and modifications of GAs.  We continue by describing the numerical
test and discussing the final results with regard to GA setup.  Theoretical
predictions and empirical results are then used for a practical evaluation of the
quenching test in the area of continuous casting.  The paper concludes by
discussing the advantages and limitations of the approach used and by outlining a
further research focus.

2 The inverse heat conduction problem

Following the generally considered definition of inverse problems, the inverse
heat conduction problem can be specified as the determination of unknown
surface boundary conditions based on internaly measured temperature histories.
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In other words: given the one-dimensional heat conduction equation, constant,
known coefficients and a complete description of the action at one end of the
domain and measurements of the temperatures at some  known location inside
the domain, determine the unknown action at the second boundary, Krejsa [4].
Specifically, we have to determine the heat transfer coefficient history, and in
addition, the actual time constant of the thermocouple used for the temperature
history measurements. The actual time constant in a given experiment can be
quite different from the time constant indicated by the thermocouple producer
and has to be considered as an inherent parameter of the experiment arrangement.

The mathematical model describing the physical behavior of the system
considering a one-dimensional problem can be covered by the partial differential
equation:

∂
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=        ,                                    (1)

where T is temperature, x the spatial coordinates, a the thermal diffusity  and t
time.

To solve  Eg.1, one has to know the initial temperature field and the
boundary conditions involved in the equation:
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where the time dependent boundary conditions are imposed on the surface of the
body in x=0 and the surface in x =1 is adiabatic. The HTC is introduced by h and
k denotes thermal conductivity. The boundary conditions are described by the
ambient temperature T∞ and the heat transfer coefficient. The ambient
temperature is known and the HTC history has to be found by the inverse task.

As already stated, the unknown sensor time constant has to be incorporated
into the inverse task as well. The dynamic behavior of thermocouple can be
described as follows:

dY
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      ,                      (3)

where Yt represents the temperature readings of the thermocouple, hm is the
contact heat transfer coefficient, A is the surface area, V is the volume, ρ is the
density and cp the specific heat. Tm denotes the temperature of the material in
sensor location and τ is the time constant of the thermocouple.

Apparently, introducing the sensor time constant into the parameters and
functions to be found, makes the already quite difficult inverse problem even
more complicated.

While the computation of the direct task (temperature fields) is routine,
solving the inverse problem deals with a ill-posed unstable problem. Thus, all
IHCP approaches must be concerned with the stability question.
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3 Genetic Algorithms

GAs have become widely used random search strategies, which use partially
random methods to 'evolve' solutions to optimal or near-optimal ones.  GAs are
one of the techniques which deal with a group of solutions called a population.
This search strategy allows for the generation of a new population in each
particular step.  This population is better or at a minimum not worse than the
previous generations.  The composition of a population in a particular generation
depends on probabilities of the population of the previous generations.  To obtain
such a new population, a couple of operators such as crossover and mutation are
applied to selected solutions.  The selection procedure distinguishes between
good and bad solutions based on an objective function that returns a numerical
value representing fitness.

Thus, the backbone of a genetic algorithm is the selection procedure and
crossover and mutation operators.  The crossover swaps some elements (genes)
between individuals and mutation changes some of them at random to explore
solutions other than those which have been presented.  However, these operators
are limited in their abilities to explore the solution space.  Since, after a greater
number of new generations, the population is composed of nearly identical
individuals, the crossover yields individuals similar or identical to the parent
strings.  Apparently the crossover cannot reintroduce the needed diversity to the
population of solutions, Goldberg [1].  In such a situation, only mutation can
reintroduce diversity, which can potentially explore the full solution space.  One
the other hand, a mutation range which is too high can lead to a more random
search procedure which is of very little use in solving difficult problems in the
shortest possible time.  By introducing a mutation range which is too narrow at
the beginning of the run, GA can only operate on a small part of the solution
space and remains at a local optima for a long time.

To decrease this limitation, a  scheduled decreasing of the mutation range is
incorporated in the GA along with the mutation operator. Assuming real-value
strings (individuals) in the population, GA starts with a high mutation range
covering 100 % of the search space and decreases this range following a given
schedule during the generating of new populations. Different types of schedules
can be used depending on the problem. We have used the simple linear schedule,
lowering the range upon the number of repeated non-changed best fitness in
following generations. The  described property of GA to  focus on a particular
part of the search space according to the actual stage and results of the search can
be understood as an adaptive behavior and so an adaptive genetic algorithm
(AGA).

GA used in this  particular application for IHCP proceeds as follows. First,
let X be a  vector of the inputs  to the system and let H be the transfer function
that produces a vector of the outputs Y=H(X). Second, let H-1 be the inverse
transfer function X=H-1(Y). To solve the inverse problems usually means either
finding the inverse transfer function H-1 or  searching for an input vector X that
gives a known output vector Y, Y=H(X). Herein  a GA is used to find such input
vector X fitting the best to a given YG=H(X). Given a population P composed of a
set of instances of genetic strings S and a mapping M that describes the
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predefinied context of the input vector Xi and  genetic strings Si so  that the
computed response vector Yc is:

Y H X X M S S PCi i i i i= = ∈( ), ( ),                               (4)

Given a desired value YG and a fitness function f ,which evaluates the
differences between the computed solution Yci and the desired values Ygi. Then
the fitness functions can be defined as follows:

f
N

Y YCi Gi
i

N

= − −
=
∑1 2

1

( )         ,                              (5)

where N is the number of the elements of vector YCi, resp. YGi.
Using the above definition GA starts by mapping M that maps genetic

strings S to input vectors X and setting all elements of the  genetic strings to the
initial  random values. Then GA repeats following steps:
1. Computation of the response vector Yci and evaluation of the fitness function
for each individual Si of the population P.
2. Selection procedure, which in our simplest way,  assigns each individual Si

either to the group of good solutions or to the group of the bad solutions.
3. Substitution of bad individuals with new individuals generated
probabilistically using crossover and mutation operators. Crossover allows the
swapping of two randomly chosen parents from the group of good solutions at
any  number of points and positions. Mutation operator substitute randomly
chosen newly generated elements of individuals by new values gi according to the
mutation range. The mutation range is gradually decreased following the linear
schedule:
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where RLi , resp. RHi is the lower resp. upper range boundary. iN represents the
actual number of repeated non-changed fitness in following generations. Imax

introduces he highest value of iN , when the range is decreased by the reduction
number s.
Steps 1,2 and 3  are then repeated until a acceptable solution is find.

4 Numerical tests

The effective convergence of GAs can be affected seriously by different
approaches with different selection procedures and crossover and  mutation
operators. Thus  first, the  laboratory quenching test was simplified a little bit and
simulated numerically in a number  of numerical tests, incorporated into the GA.
The results obtained were used as a prior knowledge of how to set up a final
genetic algorithm to evaluate the real quenching test later in the shortest time.
In these simulation studies, the  steel plate was uniformly heated to an initial
temperature of 1 (-). The body  was cooled in x=0 and the  surface in x=1 was
adiabatic. The ambient temperature was known. Assuming the  thermocouple
with known time constant, placed inside the plate (x=0.3), and the distribution of
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HTC is known, one can easily compute the temperature  history by a  numerical
method. In our case, the unknown time constant was set to 2 s and  the HTC
history was sinusoidal to compute the  desired temperature  history in the time
period of 12 time steps. The temperature field (Fig.1) derived by Eq.3 was
obtained by 1D direct task based on the  control volume method. In the simulated
inverse  task, the time constant is unknown and varies in range 0-5 s. The
unknown HTC varies from 0 to 20000 W/m2K.

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Material temperature

Thermocouple data

Heat transfer coefficient

Time Step

T
e

m
pe

ra
tu

re
 /

-/
,  

H
T

C
 /-

/ 

Figure 1: Inputs and outputs of 1D direct task.

Using the  mathematical denomination, the input vector X contains the  first
11 time step values of HTC and the  thermocouple time constant t. The  response
vector Y  contains 50 values of the temperature T. The transfer function H,
Y=H(X) is the  solution of the Fourier partial differential equations of the heat
conduction. The vector YG is obtained by numerical simulations as  the pattern
temperatures Tm. The inverse task is defined to find Xopt, which suits to the
equation YG=H(Xopt). Hence, GAs explore the search space to find such a vector
X that produces the response YG , for which the  fitness function f (Eq.5) reaches
the global maximum.

After couple of  computational experiments with various GAs population
sizes, a  population of 32 genetic strings of 12 genes each (11 for HTC, 1 for the
time constant) was used and initial values of the  vector X were chosen at random
from a given range. The range for HTC varying from 0 to 20000 and for the time
constant from 0 to 5 were mapped using the  linear M function to range from 0 to
1000.

In order to prevent oscillations of the heat transfer coef. history, which
appeared in the first experiments, the following simple smooth condition fs was
incorporated into the final fitness function:

f
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                                  (7)

To deal with this multiple objectives a simple approach based  on  a  linear
 combination (weighted sum) of multiple attributes was used. Then the final
fitness function can be expressed as:

                                                Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



f
N

Y Y
N

x x
xCi Gi

i

N
i i

i
i

N

= − − −
−

+
−



=

+
+

=

−

∑ ∑1 1

1 2
2

1

2
1

2

1

1

( ) α     ,       (8)

where α represents the weight for the linear combination of attributes values.
Figure 2 shows tree typical HTC curves, each founded by GA for a different
weight of α. As one can see, the  best results were obtained for α =0.02.
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Figure 2: Influence of differently weighted smouth condition on HTC
curves.

Further experiments were focused mainly on the scheduled decreasing of
the mutation range. As expected, the different types of schedules seriously affect
the speed of  convergence. In the chosen simple way, GA  decreases the mutation
range of each parameter by a constant value s in the time instance, when a
number of repeated non-changed best fitness iN in following generations achieve
a given value Imax..
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Figure 3: Scheduled decreasing of the mutation range of one of the
parametrs.

In Fig.3 one can see an example of the  scheduled decreasing of the range of
one parameter. Moreover, one can recognize the movement of range following
the best found solution.
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Figure 4: The influence of the setting Imax on the convergence speed.

The influence of the setting Imax on the convergence speed is demonstrated
in  Fig.4. One can see, that the lower Imax is used, the faster GA converge to the
global optima. On the other hand, too small a value Imax simultaneously with too
small a value s can fix the GA at a local maxima.

5 Quenching test

Theoretical predictions  and empirical results leading to the final set up of the GA
described in previous sections, were used for the practical evaluation of the
quenching test in the  area of the continuous casting. The  process of continuous
casting was simplified to enable us to perform experimental studies of the
process using experimental devices in our lab. Regardless of the  process
simplifications, the results obtained from the experimental studies with emphasis
on the  heat transfer process were reliable and useful for evaluation of such a test
by the inverse  task.
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     Figure 5: Experimental apparatus.           Figure 6: Measured temperature
history.

The arrangement of the experimental apparatus is shown in Fig.5. The steel
plate embedded with thermocouples is uniformly heated to an initial temperature
of 1150°C and the water cooling nozzle is set  to the initial position at the  left
side of the plate. The procedure of the experiment starts by opening of the
cooling nozzle and moving the spraying nozzle under  the plate at a constant
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distance and constant velocity of  1 m.min-1. When the nozzle reaches the  right
side of the plate, the  spraying is closed and the nozzle  moves back to the  initial
position and again repeats the cooling process. The temperature history in the
measured point in duration of 100 seconds using the 2 seconds time step is given
in Fig.6.

This temperature history was used as the pattern temperatures Tm in the
inverse task. Instead of the 11 unknown values of the HTC history in previous
numerical test, 50 unknown values of the heat transfer coefficient had to be
found  to  evaluate  this quenching test. The higher  number of unknown values
makes the problem more difficult for the GA. Nonetheless,  the GA was able to
converge to a global or near-global optima. The resulting  heat transfer history
presented in Fig.7 satisfies well given requirements for the evaluation of such a
test. The minimized average distance  between the pattern temperatures Tm and
the  temperatures computed using the found HTC history by the GA was less then
+/- 1 degree Celsius.
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Figure 7: The resulting heat transfer history.

The real time constant was near zero, and so at the lower end of the search
range, what is different comparatively with the numerical tests. The reason for
that comes from the physical  background of the heat transfer process resulting in
only slight differences between the temperatures in the case of a small time
constant of the thermocouple. Despite that, the GA converged reliably to a zero
value of the time constant and the simultaneous identification of the
thermocouple time constant in the quenching test can be also considered to be
successful.

6 Conclusions
Although the GAs like any algorithms that includes a random element can be
treated with suspicion by those, who wish to understand the solution procedure,
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they are of a real benefit in solving of highly complex problems, where the
limitations of the traditional approaches cannot be easily overcome. One of these
complex problems is undoubtedly also the inverse heat transfer problem
demonstrated in the numerical and following quenching test. Despite the use of a
simple type of GA, the resulting heat transfer coefficient histories and the time
constants of thermocouple well satisfies the given requirements. The successful
application was demonstrated in the numerical tests, and in addition verified
using experimental data obtained from the quenching test. Further investigations
will be focused  on other mechanisms and  methods such as a different selection
procedure or scheduled decreasing of the mutation range, which may help
improve convergence, Goldberg [5]. Besides the general methods used to speed
up the simple GA, a different approaches to deal with the multiple objectives
based on the niching mechanism, Horn [6], can be also introduced in the GA in
the future.
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