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Abstract

Fluid–structure interaction simulations are performed for a flexible hydrofoil
subjected to quasi-steady flow conditions. The hydrofoil is fabricated from a
polymeric material that exhibits viscoelastic effects, causing the hydrofoil to
change shape while subjected to the fluid loads. The time-dependent deformations
and loads will be compared in the future to empirical results from upcoming water
tunnel tests. The fluid–structure interaction simulations are performed using a
tightly coupled partitioned approach, with OpenFOAM as the flow solver and a
finite element solver for the structural response. The codes are coupled using a
fixed-point iteration with relaxation. The flow is modeled as laminar and quasi-
steady. Simulations indicate the hydrofoil angle of attack (AOA) changes from
zero to a negative value as the material relaxes. The approach used here is being
developed for application to a blood pump that has a performance closely tied to
blade deformation through the impeller tip clearance.
Keywords: fluid–structure interaction, viscoelasticity, hydrofoil, OpenFOAM.

1 Introduction

The area of fluid–structure interaction (FSI) modeling has been very active in
recent years, as evidenced by the numerous papers in the literature (see, for
example, the review by Tezduyar and Sathe [1]). The dramatic advances in
affordable computational resources coupled with improved modeling capability
for both fluid and solid structures over the past two decades have made feasible
coupled fluid/solid simulations for real-world engineering applications. While
FSI simulations have been an area of research since the late 1970s (see Felippa
et al. [2]), there still exist several challenges before these simulations will be
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routinely applied to real-world engineering applications (Tezduyar and Sathe [1]
and Longatte et al. [3]).

The present application is related to a flexible blood pump impeller with a tip
clearance (i.e., the clearance between the blade tips and the pump housing) that is
very sensitive to blade deflections. The impeller is fabricated from a polymer that
has a time-dependent response to applied loads (creep) and enforced displacements
(stress relaxation), and therefore requires the use of a viscoelastic material model.
The influence of blade deformation on pump performance is expected to be very
strong because of the anticipated tip gap changes.

The approach to solving this problem involves several steps. The first step is
to implement a FSI solver capable of modeling the nonlinear, time dependent
polymeric material behaviour. Verification and validation of this solver is the
second step and will be performed using a simple hydrofoil constructed of the
same polymer as the blood pump impeller, and subjected to flow in a water tunnel
for which net blade loads and blade deformation will be measured. The modeling
approach will then be modified and updated as necessary and then applied to
the actual rotating impeller of the blood pump. Time-dependent performance
predictions of the pump will be compared to empirical results. The focus of the
current paper is the fluid–structure simulations of the simple polymeric hydrofoil
operating in the water tunnel test section.

2 Problem description

A single hydrofoil constructed of a polymeric material is affixed in a water tunnel
test section with zero angle of attack (AOA). The hydrofoil is a modified NACA
series 66 with a = 0.8 camber [4] and thus has nonzero lift at zero AOA. The
upstream flow boundary is modeled as a uniform inflow with a velocity of 2 m/s
and the downstream flow boundary is modeled with a zero pressure condition. The
no-slip condition is applied at all other fluid boundaries. The foil is constrained
at the root and is subjected to fluid pressures at the fluid/solid interface, ΓF/S . A
schematic of the setup is shown in figure 1. The test section has a length (L) of
0.762 m, width (W) of 0.508 m, and height (H) of 0.114 m. The distance from the
inlet to the foil leading edge is 0.356 m. The foil has a chord length (c) of 0.050 m
and a span (s) of 0.100 m.

The Reynolds number, based on hydrofoil chord, for this flow is approximately
100,000 and the critical Reynolds number for transition to turbulence is on the
order of 200,000. Therefore, it is reasonable to employ a laminar flow model for
the first attempt at modeling this problem.

3 Fluid–structure simulation approach

The governing equations for continuum mechanics (both fluids and solids), cast in
an arbitrary Lagrangian Eulerian (ALE) form, are as follows. Mass conservation
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Figure 1: Flow over a cantilevered modified NACA 66 hydrofoil with uniform
inflow conditions.

is governed by the continuity equation:

∂ρ

∂t
+ ∇ · [ρ (v − vale

)]
= 0, (1)

where ρ is mass density, v is the particle velocity, and vale is the grid point
velocity. For a Lagrangian implementation, vale = v, and for an Eulerian
implementation, vale = 0. Performing a force balance and making use of the
continuity equation leads to the following momentum equations:

ρ
∂v

∂t
+ ρ

[(
v − vale

) · ∇]v = ∇ · σ + ρb, (2)

where σ is the stress tensor and b is the body force.
The current effort makes use of a segregated approach, wherein each domain

is modeled separately and employs different solvers. The fluid domain solver for
this problem employs a finite volume discretization while the solid domain solver
uses a finite element discretization. The use of a segregated approach enables the
governing equations to be cast in different primitive variables: velocity for the
fluid solver and displacement for the structure, as is traditional for each of these
domains.

Because the fluid and solid time scales are much shorter than the viscoelastic
relaxation (discussed below in Section 3.2) timescale, a quasi-steady simulation is
used in this work. It is therefore not necessary to include the temporal components
in the continuum equations shown above, but they are included for the sake
of completeness. Note, however, that the solution time does play a role in the
viscoelastic material model response.

While the governing equations for each domain (eqns (1) and (2)) are identical,
the constitutive relationships required for closure of the equations differ, as
described below along with the coupling requirements at the fluid/solid interface.
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3.1 Flow solver

OpenFOAM is the flow solver of choice for this effort because it facilitates
custom integration with third-party solvers, has a pre-existing, robust mesh motion
capability, and it is freely available through the GNU General Public License. The
automatic mesh motion solver for the current problem makes use of a variable
diffusion coefficient with quadratic dependence on the distance from the moving
boundary (i.e., γ = 1/l2), see Jasak and Tuković [5]. The flow for this problem
is approximated as incompressible and laminar, and the stress-strain closure is
modeled as Newtonian:

σ = −pI + 2µS, (3)

where p is the thermodynamic pressure, µ is the absolute viscosity, I is the second
rank unity tensor, and S is the strain-rate tensor.

3.2 Structural solver and solid model

The structural solver employed for this work uses a Lagrangian finite element
(FE) implementation, which means the mesh velocity is equivalent to the material
velocity, vale = v. The momentum equation (eqn 2) becomes:

ρ
∂2u

∂t2
= ∇ · σ + ρb, (4)

where u are the material displacements.
One of the important aspects of the current problem is the time dependency of

the polymeric material. The time dependency is a result of a viscous-like material
behaviour. The material also exhibits elasticity in that it will not continue to
flow unbounded with the application of a finite stress. The viscoelasticity model
employed for this work follows an approach similar to that used by the commercial
software Abaqus (see the Abaqus User’s Manual [6]) and derived in a similar
manner by Kaliske and Rothert [7]. This model is for linear viscoelastic materials
(which does not mean the time response of the material is linear, but rather the
stress is proportional to strain at any given time: ε [cσ(t)] = cε [σ(t)], where c
is a constant) and uses the approximation that shear and volumetric behavior are
independent. Experimental evaluation of the current material suggests that only
the shear terms need to be modified by the viscoelastic model, which is consistent
with most material behavior as reported by Kaliske and Rothert [7] and also in the
Abaqus Manual [6].

The underlying material model is that of the Generalized Maxwell Element,
which consists of Maxwell elements (i.e., a spring and dashpot in series) in parallel
with a Hooke element (i.e., a spring) as shown in figure 2. The spring stiffness
shown in this figure represents the material stiffness at infinite time (i.e., after all
of the viscoelastic forces have diminished to zero). Each of the Maxwell elements
are represented by a term in a Prony series (a series of the form

∑N
i=1 γie

−t/τi)
representation of the material, which is further described below.
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Figure 2: General Maxwell element with N components.

The stress is decomposed into hydrostatic and deviatoric components in order
to isolate the viscoelastic effect from the volumetric terms:

σn+1 = κ tr εn+1I + dev σn+1, (5)

where κ is the bulk modulus, tr εn+1 is the trace of εn+1, and dev σn+1 is the
deviatoric part of the material stress tensor for the current (n + 1) time step. The
deviatoric part of the stress takes on the following form:

dev σn+1 = dev σn+1
0 +

N∑
i=1

hn+1
i , (6)

where σ0 is the elastic stress tensor and hi are the internal stress variables that
come from the so called heredity integral:

hi(t) =
∫ t

o

γie
− t−s

τi
∂σ0(s)
∂s

ds. (7)

Splitting this integral into parts that are known (i.e., time period [0, tn]) and
unknown (i.e., time period [tn, tn+1]), and using the approximation ∂σ0(t)

∂t ≈
σn+1

0 −σn
0

∆t , the internal stress variables at the next time step are approximated as
follows:

hn+1
i ≈ e

−∆t
τi hn

i + γi
1 − e

−∆t
τi

∆t
τi

[
dev σn+1

0 − dev σn
0

]
, (8)

where γi are the normalized relaxation constants, τi are the relaxation times, and
∆t = tn+1 − tn is the time step. Both γi and τi represent terms of a Prony series
and are determined from empirical data as described below.

Important for nonlinear finite element analyses using an implicit formulation
with a Newton algorithm is the material stiffness tensor. The tensor is computed
as follows for the viscoelastic material:

Cn+1 = κII + 2µ0

[
1 +

N∑
i=1

γi
1 − e

−∆t
τi

∆t
τi

](
I − 1

3
II

)
, (9)

where I is the fourth rank unity tensor.
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Figure 3: Stress relaxation data and the resulting Prony series curve fit.

Table 1: Prony series stress relaxation parameters.

Component, i γi τi

1 0.1484 4.130

2 0.2115 8.195x101

3 0.1993 1.610x103

Relaxation constants and times, γi and τi, are determined from empirical stress
relaxation data of tensile test samples. The polymeric material used in this work
has a 95 A Shore hardness and is from the Hapflex line of materials purchased
from Hapco, Inc., Massachusetts USA. The constants are determined by a least-
squares fit to uni-axial tensile stress relaxation data shown in figure 3 along with
the resulting fit. The parameters used to create this fit are provided in table 1. The
remaining parameters required for the structural model are the long term modulus,
E0, and Poisson’s ratio, ν. The material is assumed to be nearly incompressible
and thus ν = 0.49 is used in the simulations. The long term modulus has been
estimated from empirical data to be E0 = 30.4 MPa.

The finite-element solver used for this effort has been been implemented by
the authors in the form of a C/C++ program that can easily be combined and
compiled with OpenFOAM. The use of a separate finite-element solver instead of
the existing structural finite volume solver in OpenFOAM is a matter of preference.

3.3 Coupling approach

The algorithm defining the solution procedure is provided in figure 4. As indicated
in this figure, a fixed-point iteration is performed with under-relaxation to ensure
the fluid pressures and solid displacements are tightly converged before moving on
to the next time step.
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The under-relaxation approach employs the Aitken ∆2 method [8] to define the
dynamic relaxation coefficient. The coefficient is calculated as follows:

ωi = −ωi−1
rT

i (ri+1 − ri)
|ri+1 − ri|2 , (10)

where ri = ûΓF/S ,i − uΓF/S ,i−1 and ûΓF/S ,i are the computed fluid/structure
interface displacements for iteration i. The prediction of the displacements for
the current iteration is then uΓF/S,i = uΓF/S ,i−1 + ωi

(
ûΓF/S,i − uΓF/S,i−1

)
,

as indicated in the coupling algorithm of figure 4. The iteration stops when
|ri|/√n < ε, where n is the length of ri and ε is the error tolerance.

Solve Fluid

Solve Solid

/F S
pΓ

Converged? t=t+δt

Move Fluid Mesh

ui = ωiûi - (1-ωi)ui-1 t>tend STOP

START

Fixed-Point Iteration

No Yes

Yes

No

i++
ûi

Figure 4: Implicit coupling scheme with under-relaxation.

4 Simulation results

The important variables to monitor for the current simulation are blade deflection
and net blade load because these will be measured during the upcoming water
tunnel tests. Sample results for the blade deflection, shown by blade tip sections,
are provided in figure 5. The net blade forces, from integrating the fluid pressures
over ΓF/S are shown in figure 6. This figure shows results for a baseline model and
the viscoelastic model. The baseline model uses a constant constitutive relationship
wherein the modulus represents the material response to an instantaneously
applied load.

The blade AOA at the tip section changes from zero at the start of the simulation
to increasingly negative values, reaching −8.1◦ at t = 360 s. The blade lift
(lift = −Fy) decreases to zero after about 50 s of operation, and then continues
to decrease with time as indicated in figure 6. This figure also shows the large
difference in force magnitude between the baseline and viscoelastic models and the
strong temporal dependence of the viscoelastic model. Note that the the first 360 s
of operation are shown in this figure. Results have been computed for longer times
and indicate the system is nearly at a steady state condition after approximately
one hour of operation.
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Figure 5: Blade tip section deflections; curves show results from different
simulation times; baseline model response shown by dotted curve.
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5 Summary and conclusions

Tightly coupled FSI simulations have been used for a single hydrofoil sub-
jected to quasi-steady flow to model the effects of a viscoelastic hydrofoil
operating in a water tunnel test section. The fluid domain is discretized using
the finite volume approach, and solved using OpenFOAM. The flow is mod-
eled as incompressible, laminar, and steady. The moving mesh in the fluid
domain is accomplished through the tetrahedral decomposition approach with
Laplace smoothing, as implemented in OpenFOAM. The solid domain is dis-
cretized with finite elements and solved using an author-written solver that
is compiled with the OpenFOAM solver to facilitate data transfer necessary
for the domain coupling. Simulation results for blade deformations and loads
with respect to time show the dramatic effect of employing the viscoelastic
constitutive relationship instead of an equivalent material modulus. The AOA
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of the blade monotonically decreases from zero to increasingly negative val-
ues (reaching −8.1◦ at t = 360 s), with concomitant decreases in blade
lift. It can be concluded that the inlet flow velocity of 2m/s should be
satisfactory for use in the water tunnel test to provide blade deformations and
forces large enough to be easily measured.
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[5] Jasak, H. & Tuković, Z., Automatic mesh motion for the unstructured finite
volume methodupt. Transactions of FAMENA, 30(2), pp. 1–20, 2006.

[6] Hibbitt, K., Sorenson. ABAQUS user’s manual, version 6.6, 2006.
[7] Kaliske, M. & Rothert, H., Formulation and implementation of three-

dimensional viscoelasticity at small and finite strains. Computational
Mechanics, 19(3), pp. 228–239, 1997.
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