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Abstract 

The incompressible system of Navier-Stokes equations for an Initial-Boundary 
Value Problem is solved on an unstructured tetrahedral grid using a finite 
volume method. Implementation of a free surface calculation is done by using a 
combination of Level Set and Volume Of Fluid methods. A numerical scheme 
utilizes the method of fractional steps based on the predictor-corrector method 
and the artificial compressibility method. Invariant features of a tetrahedron are 
used in order to calculate fluxes over a control volume with higher order. A high 
order approximation in Navier-Stokes and VOF level set advection equations is 
made by a TVD SuperBEE scheme. The turbulence model is based on LES 
methodology. In order to decrease the time of solution for a large geometry, a 
distributed computation routine is incorporated into the method. The distributed 
calculation is based on a TCP/IP network and can use personal computers under 
Windows or UNIX. The efficiency of the distributed calculation is shown. The 
method is verified by comparison of results with other calculations and 
experiments – cavity flow case, dam break free surface flow case, turbulent flow 
in a circular pipe case – Poiseuille flow (turbulent energy distribution). The 
method is successfully used for CFD simulation of water intake on Zagorskaya 
Hydraulic Power Plant (Russia). The results are close between laboratory 
experiments and CFD computations. 
Keywords: unstructured grid, finite volume method, artificial compressibility 
method, predictor-corrector method, Navier-Stokes equations, distributed 
computation. 
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1 Introduction 

It is a common practice these days to use computational fluid dynamics for 
complex technical applications. Thus, computational methods must meet certain 
requirements:  high order of space and time discretization, lesser time demands 
for integration, fair geometry approximation and exact representation of flow 
specific features. For this purpose, a numerical solution of incompressible 
viscous fluid equations with free surface, utilizing a weak form of Navier-Stokes 
equations is designed. The method incorporates a high order of approximation, a 
decrease in integration time by using distributed computation on cheap available 
PCs, unstructured mesh topology, allowing approximation of any arbitrary 
complex geometry.  

2 Mathematical model and governing equations 

2.1 Governing equations 

In order to describe a fluid motion in E4, the most basic system of governing 
equations is used, Temam [1]. Three dimensional evolutional equations of mass 
and momentum conservation for Newtonian incompressible fluid, Navier-Stokes 
equations, in dimensionless form for the turbulent flow in a weak form are used: 
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here: velocity vector-function 3],0[: ℜ→×Ω TV , scalar pressure 
function ℜ→×Ω ],0[: TP . We seek solution on an arbitrary bounded domain 
Ω∈E3; xi – directions in E3 (x,y,z – for  Cartesian coordinate system); 

wnvnun zyx ++=Θ ; Re – Reynolds number; Fr – Froude number; g – gravity 
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where i=1..3,j=1..3; mij – turbulent stress tensor, 
)(5.0 jijjijijij

L
ij VVVVVVVVm ∂−∂−−= ,see section 2.2. The integral form 

of (1) assumes that weak solutions exist in R4 [1,2]. 
     A free surface is described by a modified Volume of Fluid (VOF) method, 
Sussman et al. [5].; FkFs ∇⋅= σ - surface tension; k – free surface curvature; F – 
color set function, that indicates the level of free surface; σ - wetting coefficient. 
System of equations (1) is added to by the kinematic and dynamic conditions for 
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a free surface (continuity of normal stress vector on a free surface), described in 
the level set advection and gradient equations: 
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     We assume that a color set function F equals 0 for air and 1 for liquid. It 
differs form general idea for F>0 for liquid and F<0 for air, as described in the 
general VOF approach, Sussman et al [5]. So the method can be called a Level 
Set method with a VOF procedure of calculating stress vectors on a free surface. 

2.2 Boundary conditions 

System of PDE equations (1) must be completed by initial-boundary values in 
order to have a well-posed problem in Ω. Boundary conditions in general form 
are Dirichlet and Neuman conditions for Boundary-value Navier-Stokes 
equations, Temam [1]. In the physical domain one can define the following 
boundary conditions: at the inlet, the values of all variables are prescribed. At the 
outlet, the streamwise gradient for each variable is prescribed to be equal to zero. 
At the walls, no slip and no penetration are assumed. The pressure gradient 

normal to the wall is calculated as iji
i

mu
n
P

+∇=
∂
∂ − 21Re , and for turbulent 

flows is assumed to be )(5.0 jijjij
i

VVVV
n
P
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∂
∂ . Derivatives on the right 

side are small for the near wall velocities and can be assumed to be equal to 0. 

2.3 Large eddy simulation model for turbulent flows 

To represent turbulent flows one must recover all flow scales, thus closing a 
turbulent stress tensor ijm  in (1) one way or another. This can be done by four 
ways: recovering all flow scales directly from Navier-Stokes equations (Direct 
Numerical Simulation) and, hence, neglecting mij; imposing a complex turbulent 
model via additional equations for mij and averaging (1) by Reynolds averaging 
procedure, hence computing only mean flow properties; representing large flow 
scales (where the turbulent flow is anisotropic) directly from Navier-Stokes 
equations (1) and imposing a simple turbulent model (sub grid model) for small 
(isotropic) scale turbulence (Large Eddy Simulation); combining the latter two 
approaches (Detached Eddy Simulation). Here we shall use the LES model for 
turbulent flows. A detailed description for LES methods and applications can be 
found in Chunlei et al. [9]. In brief, the Large Eddy Simulation is conducted by 
averaging (1) in time and space with arbitrary scale L, related with mesh size of 
Ω discretization.  Let’s impose a general noncommutative averaging operator 
in 4ℜ : 

)(VLV = ,            (3) 
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     Thus there exists decomposition in 4ℜ : )(1 VLV −=  with commutative 
properties for a differential operator:  

))(()( 11
ititit VLVLV −− ∂=∂=∂  etc for all  xi.      (4) 

     Here we denote  tt ∂∂=∂   for brevity.  

     In general ijm  is a nonsymmetrical tensor, which arises from averaging of the 
advective part in the momentum equation by applying (3) to (1). In 
general ijij

L
ij VVVLVLm −= − ))(( 1 , so closing the asymmetrical tensor on the 

selected small scale is done by the modified Leray model, Chunlei et al. [9]:  
)(5.0 jijjijijij

L
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     Adding (5) to (1) closes the system of equations. Hence, the solution of 
evolutional PDE system (1) with tensor (5) on scales greater than L is conducted 
as a direct numerical simulation. For the flow scales less than L (for greater wave 
spectra numbers of turbulent kinetic energy, small scale turbulence Chunlei et al. 
[9]), the flow is represented by the modified Leray model (5). To have a well-
posed problem for LES modeling initial conditions must be properly imposed. 
For technical problems initial conditions are derived from laminar flow 
calculations in the same geometry. 

3 Numerical method 

3.1 Meshing 

In order to solve (1) on a given bounded domain, Ω in E3 must be meshed. In the 
following method a tetrahedral gird that covers the domain is used. The grid 
generation is using a Delauny algorithm, Cignoniz  et al. [7], that allows the 
creation of a space-adopted high quality mesh. The algorithm utilizes mesh 
refinement near given areas. Any arbitrary geometry can be discretized due to an 
unstructured mesh structure. An example of meshing a 3D power intake of 
Zagorskaya Hydraulic Power Plant is given in fig. 1. 
 

 

Figure 1: An example of meshing – a power intake of Zagorskaya Hydraulic 
Power Plant. 
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3.2 Numerical integration 

In accordance with the PDE system (2) two methods are applied to integrate the 
system in space. A march algorithm similar to the method used in aerodynamics, 
Evstigneev [12], is used for a continuity equation in (1) is rewritten as 

0=⋅Θ⋅+⋅
∂
∂

∫∫
Ω∂Ω

dsdWP
t

β , and a predictor-corrector method is used for 

classic system of Navier-Stokes equations (1). Here β is an artificial 
compressibility parameter, and equals 80-120, Chorin [6]. The march algorithm 
is more reliable and much faster due to the lack of Poisson correction equation 
for pressure function but the predictor-corrector algorithm is more accurate. So 
the combination of these two methods provides a fast and reliable procedure for 
flow calculation in complex conditions. 
     When the space integrals are found, time integration must be applied to the 
advance solution in time. So, the integration of PDE system (1) consists of two 
steps: finding space integrals (integral-differential operator in 3ℜ ) and applying 
the time advancing procedure (solution of ODE in 1ℜ  with found integrals in 

3ℜ ). 
     Considering a free surface flow, the solution of (1) is only done in the part of 
the domain where F>0. So the color function equation must be integrated as well.  

3.2.1 March scheme 
The march method is based on integration of a PDE system like a hyperbolic 
system of equations, thus flux solvers must be applied to find a solution. The 
idea of the method originates from Chorin’s artificial compressibility solution 
methodology [6]. In this case a system of singular perturbed PDE is considered 
thus constructing a strictly hyperbolic system of equations for a void viscosity, 
i.e. Re equals eternity.  
     In this case a flux splitting scheme for the inviscid part of (2) on a tetrahedron 
boundary is used. Thus, the flux value on the boundary of a tetrahedral equals: 

( ))(5.0 lrlr qqAffF −⋅−+= ,     (6) 

where F is a flux value on the side of a tetrahedron; ‘l’ and ‘r’ letters stand for 
left and right side values of variables; qFA ∂∂= / -system Jacobean, which has 

the following decomposition 1−Λ= TTA , the same as the compressible flow 
equations with four real eigenvalues:  

Θ=2,1λ , c±= 2.14,3 λλ ,        (7) 

where βλ += 2,1c  - artificial wave speed propagation. In accordance with the 
found Jacobean eigenvalues, a U-CUSP similar to the Evstigneev [12] scheme is 
constructed, thus solving an inviscid part of the Navier-Stokes equations.  A 
detail description of the scheme can be found in Evstigneev [12]. In order to 
have a high accuracy in flux splitting scheme a high order reconstruction of 
variables is used. A diffusion equation is solved using a Finite Volume scheme, 
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described in [4,9]. Hence, a solution is found by integrating a singular perturbed 
system of hyperbolic PDEs in artificial compressibility methodology on a 
tetrahedral unstructured grid.  

3.2.2 Predictor corrector scheme 
Consider a classic system of Navier-Stokes equations (1) without singular 
perturbations. In this case a link between pressure and the solenoid velocity field 
must be found in an implicit way. There are many ways to do that, for example 
see [2,4] In the present work we use a predictor-corrector factual step scheme, 
based on Yanenko et al [2]. The semi-discrete steps are: 

Step 1. )( nnn VVtVV ∇⋅∆−=−′   -  explicit scheme.           (8) 

Step 2. ijmVtVV +∇⋅∆=′− − ~Re~ 21  -  implicit scheme.           (9) 

Step 3. tVP ∆⋅−∇=∇ /~2 - Poisson equation solution in assumption that 
01 =⋅∇ +nV .               (10) 

Step 4. PtVV n ∇∆−=+ ~1  - correction of V solenoid field.       (11) 
     Let’s assume that a vector-function V and pressure function P values (i.e. 
from initial conditions) are known in ΩxTn, and vector-function V is solenoidal 
in Ω. Then on the first step a nonlinear advection equation (inviscid Burgers 
equation) is solved (8). On the second step a solution of diffusion equation (9) is 
found. Vector function field V is not solenoid in Ω if only two steps are applied 
– that’s the predictor part. So the velocity field is corrected on the fourth step 
(11), that’s the corrector part. In order to consider solenoidality of velocity 
vector-function a pressure function is calculated on the third step by the Poisson 
equation (10) with a right side as the divergence singular term.  The convergence 
of fractional steps method (11) is proved in Yanenko et al. [2]. Numerical 
integration of fractional steps is done using a finite volume method.  

3.2.3 High order variable reconstruction 
In order to find a variable value on a boundary side of a tetrahedron with high 
accuracy, a high order interpolation is applied for both schemes. Unstructured 
grid solvers usually suffer from the main loss of accuracy due to the difficult 
topological interpolation of variables. In this work with the staged grid variable 
storage high accuracy approximation is achieved by applying Taylor series on 
the tetrahedron boundary side projection, i.e.:   

)(0),,(),,( 2LLqzyxqzyxq eeee ∆+∆⋅∇+= ;   (12) 

here ∆L – length in E3 from centers of nearby tetrahedra; eq  – variable value in 
tetrahedron center; q – variable value in tetrahedron boundary side.  
     In the present work a geometrical invariance of a tetrahedron is used, for 
details see Evstigneev [12]. As the result a gradient would transfer in the 
following form: 
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( ) LLqqqqLLqLq ADCBe ∆∆⋅−++⋅≅∆⋅∂∂=∆⋅∇ /]3/1[25.0/ , 
hence: ]3/)[(25.0 ADCBef qqqqqq −+++= ,                        (13) 

so that the values of left and right variables on a tetrahedron side are found using 
(13). Here qA etc are the values of the variable on the vertexes of a tetrahedron; 
qf – variable value on a tetrahedron face. Values on tetrahedron vertexes are 
found using geometrical weighted interpolation.  
     Using high order in advection equations leads to instability due the existence 
of nonmonotonous solutions as described by the Godunov’s theorem, see 
Fletcher [4]. To avoid numerical instability a nonlinear scheme must be applied. 
In the present work a TVD SuperBEE limiter is used as one of the least 
numerical diffusive. This limiter was tested on modal transport and inviscid 
Burgers equations [9,12] with very good results. In the author’s recent works the 
limiter was applied to DNS and LES solutions [9–11] and good agreement found 
with experimental and numerical data. 

3.2.4 Time integration 
Time integration for the inviscid part of (1) in both schemes (predictor-corrector 
and march schemes) is done using the 4-th staged explicit Runge-Kutta method 
[3]. Time advancement of diffusion equation utilizes the implicit 2 staged 
Runge-Kutta scheme, Hairer et al. [3]. Both methods are described in [9,12] 
thoroughly. The time step limit in both methods is based on the limit for the 
advection Burgers equation, hence limited by the CFL [3] condition. 

3.2.5 Color set function integration 
After the numerical scheme to solve (1) is applied, a free surface must be 
considered, thus a PDE system (2) must be integrated. The level set equation for 
the color function (2) is solved using the finite volume method by converting it 
into appropriate hyperbolic form, using the same approach as for the advection 
equation in the predictor-corrector scheme, i.e. using finite volume with high 
order variable reconstruction. The equation (2) changed to: 

VFFV
t
F

⋅∇+⋅−∇=
∂
∂ )( .          (14) 

     If the velocity vector-function field is solenoid, thus ∇⋅V=0, equations (14) 
and (3) are equivalent. But, since the numerical method uses singularity 
perturbation for artificial compressibility or the fractional steps predictor-
corrector method, the divergence term in (14) must be considered to ensure 
solenoidal velocity vector-function behavior on a free surface.  
     The free surface tension Fs in (1) is calculated on every time step. Numerical 
integration of (1) is applied only in the part of the domain where F>0, thus 
decreasing computational time.  The pressure and velocity are solved on the 
liquid side of the interface between air and liquid using the methods described in 
Sussman et al. [5]. For the edges that intersect the free surface, the pressure that 
would be calculated via the extrapolation to the control volume face is replaced 
by the hydrostatic pressure as the differences of distances where 0<F<1 in the 
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direction of the gravity vector field. The free surface tension is applied by the Fs 
in (1) only for the liquid side of the interface between air and liquid, and only in 
regions where 0<F<1 that come from the equation for k in (3). 

3.3 Distributed calculations 

The numerical method for Navier-Stokes equations integration, presented in the 
following work, is developed for complex geometries and turbulent flows. 
Hence, as any CFD method, it is very resourceful on computer processor power 
and memory.  In order to decrease computer resource dependence, a distributed 
computation routine is incorporated in the method for TCP-IP networks. 
Computations can be distributed on any PC network. Tests were made on PCs 
with MS Windows XP and RedHat Linux 7.0 operational systems. The algorithm 
is based on division of source domain Ω on separate parts with crosslink 
boundary tetrahedra. Each PC in the network has a client-sever application that 
connects to the neighbor computer in the network by the given IP address. Data 
exchange is done only for neighbor tetrahedra, thus decreasing network usage. 
Detailed description of the proposed method is given in Evstigneev [12]. 
Computation acceleration comparison for both schemes as given in fig. 2 was 
conducted for the lid driven cavity problem with Re=25 000. The grid consisted 
of 701 434 tetrahedral elements.  
 

 

Figure 2: Calculation time for distributed computation. 

4 Numerical experiments 

4.1 Testing numerical scheme 

Thorough tests of the numerical method for incompressible turbulent Navier-
Stokes equations were carried out. Only few brief results are presented in the 
present paper.  
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4.1.1 Lid driven cavity problem  
This test case is the classic task for numerical methods in 2D and 3D geometry 
for incompressible and compressible low Mach number viscous flows. The test 
was preformed by many authors for various Reynolds numbers, including 
fundamental results for nonlinear dynamics, Evstigneev [10].  As a result, this 
test case has became a main model task for all CFD codes since the end of the 
60-th. The test case has a cubic geometry with solid wall boundary conditions. 
On one of the walls a tangent velocity is set to 1. 

 
Figure 3: Data comparison form [11]. a – Re=1 000; b- Re=10 000. 

     Results for Re=1 000 and 10 000 are given in fig. 3 from [10]. For Re=10 000 
the flow is turbulent, so averaged velocity profiles are compared. It can be seen 
that the results of different authors have a close fit. For more results see 
Evstigneev [10]. 

4.1.2 Broken dam problem 
Broken dam problem is a good model test case for the free surface flow problem 
that has good experimental and numerical results.  
 

 
Figure 4: Comparison of numerical and experimental results for the dam 

break case, Re=500. 2a – initial liquid fraction height, b – current 
liquid fraction height; t – time in sec. 

     The test case has a rectangular geometry with ¼ volume filled with liquid. 
Experimental results were obtained for the same geometry from Sussman et al. 
[5], results are shown in fig. 4 for Re=500. 
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4.1.3 Turbulent flow in a circular pipe 
This test case is a classic case study for turbulent flow verification for 
incompressible viscous flows. The test case has detailed data obtained from DNS 
laminar-turbulent Poiseuille flow transition studies as well as for the developed 
turbulent regimes, e.g. Chunlei et al. [9]. 
     The case study has a circular geometry with solid wall boundary conditions 
and periodic boundary conditions on an outflow border. Inflow boundary 
conditions are laminar as well as initial conditions with no initial perturbations.  
     Results of turbulent energy distribution from numerical investigation with 
comparison to the other authors’ results are shown in fig. 5. Energy spectrum 
comparison shows good data correlation with other results. For more information 
see Evstigneev [11]. 

 

 
Figure 5: Kinetic turbulent energy spectrum comparison for turbulent 

Poiseuille flow in a circular pipe for Re=12 000. E – mean 
turbulent energy, k – wave number. 

     All tests of the numerical method presented in this paper showed good results 
and data fit.  

4.2 Applications for technical hydrodynamics  

The method was designed for technical application and has already been used for 
hydrodynamic investigation of complex hydraulic power plants. One example of 
its technical application is presented in the present work. 

4.2.1 Investigation of turbulent free surface flow over a power intake of 
Zagorskaya hydraulic power plant 

Input geometry was presented in AutgoCAD and translated to preprocessor 
format by a Visual Basic adaptive program. An adaptive tetrahedral grid was 
created automatically by the preprocessor; the fragment of surface is shown in 
fig. 1. Governing system of equations (1) was used with Carioles acceleration. 
Integration was conducted on 4 computers on a TCP-IP network using a 
combination of march and predictor-corrector algorithms.  
     Boundary conditions on the input boundary are given by the time changing 
discharge Q(t) through the intake. Other boundary conditions are standard. Free 
surface is given on a constant level with no perturbations. 
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     The numerical experiment was carried out for 10 hours of working time for 
the power intake. Averaged vector function V on the surface is presented on 
fig. 7. A laboratory model scaled 1/50 was made for the given intake geometry 
for experimental hydrodynamic investigation. Velocities were measured by 
thermoanemometers. Data was presented to the author by the Hydroelectric 
Power Plant maintenance organization. Numerical and experimental data 
comparison for laboratory scaled model on twelve vertical sections is done with 
5% mean results deviation. Two verticals for the first section (15sm from the 
power input in 1:50 scale) are presented in fig. 6.  
     Average and pulsation velocities and pressure functions, turbulent stress, free 
surface levels are calculated as the result of numerical investigation. Obtained 
data was used for power intake construction optimization for the second power 
plant construction queue.  

 

 

Figure 6: Comparison of computational (lines) and experimental data for 
averaged streamwise (right) and spanwise (left) averaged velocities. 

 

 

Figure 7: Averaged vector-function V in E3 on the surface of the power-
intake. 
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5 Conclusions 

The purpose of this paper is to present a new numerical method for viscous 
incompressible flow calculation in R4 with utilization of distributed 
computations and large eddy simulation methodology of free surface flows, 
governed by Navier-Stokes equations. The integration is conducted on a 
unstructured tetrahedral grid. This allows the use of the method for complex 
geometry of technical challenging tasks. A high order finite volume method for 
flux calculation is used. To maintain monotonous solutions a TVD SuperBEE 
flux limiter is applied. A large eddy simulation method is considered for almost 
any averaging scale. The distributed computation on cheap PC networks allows 
the use of any arbitrary network as a computational environment. 
 

 

Figure 8: Zoomed velocity vectors (V) and free surface depression (F) near 
one of the vertexes. 

     Numerical results and data comparison for case studies demonstrated good 
performance. The method is used to calculate turbulent free surface flows on 
complex geometries. Two technical tasks are considered to demonstrate the 
ability of the method in handling complex turbulent regimes and geometries. 
     The numerical method, presented in the paper, is part of a complex CFD 
module that was developed by the author.  Other parts of the complex, used for 
compressible viscous and inviscid flow computations, are presented in other 
papers [9,12]. 
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