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ABSTRACT
In this paper, artifi cial neural networks (ANNs) were used to assess the performance of fl ow meters used in 
industrial water supply. These fl ow meters are susceptible to drift, a condition causing them to give errone-
ous readings that are inconsistent with the actual fl ow. A simulation of industrial water fl ow to the industrial 
consumers was made. This simulation contained both healthy and drifting fl ow meter readings. ANN was built 
and trained on the simulated data. At the time of testing, the ANN developed was correct 89.52% of the time in 
determining the status of the fl ow recorded by a fl ow meter.
Keywords: artifi cial neural network, fl ow meter drift, industrial water supply, statistical process control.

1 INTRODUCTION
The importance of water cannot be overemphasized. Because of this, people realized the importance 
of controlling, organizing, and regulating its use. No sensible controlling, organizing, regulating, 
and planning can be done without accurate measurement. Hence, the abundance of fl ow meters in 
any water system.

Accurate measurement arrangements are required for effectively managing water infrastructure 
regimes. Flow meters can be subject to specifi c failures such as erroneous readings and breakdown. 
Inaccurate measurements affect the controlling, organizing, and regulating processes of the water 
system and planning. Measures for avoiding and mitigating such fl ow meter problems include: cali-
bration, repair, and replacement. Flow meter calibration generally involves checking against accurate 
standards to determine any appreciable deviations and correcting for errors. Yet, this calibration is 
not a one time transaction as it does not end the problem forever.

Flow meter calibration is often neglected by the operation and maintenance staff of a water sys-
tem. Drift is an error in measurement, which can increase with time. Ben Salamah et al. [1] outlined 
a statistical process control (SPC)-based fl ow meter drift detection method for the industrial water 
use regime. Realizing the usefulness of artifi cial neural network (ANN) modeling for forecasting 
and classifi cation objectives, an extension of this research considered specifi c applications of ANN 
modeling with improved SPC frameworks for fl ow meters. This paper presents some key fi ndings 
from the application of ANN models for detecting fl ow meter drifts.

2 LITERATURE REVIEW
Cheng [2] provided an alternative to SPC methods. The SPC methods, namely the Shewhart and 
CUSUM control schemes, were replaced by ANNs. The neural network architecture that Cheng used 
was the three-layer fully connected feed-forward network with back propagation. For the inputs for his 
network, Cheng used both numerical and symbolic inputs. For the numerical inputs, Cheng used a 
string of 16 past data. This string of data, called window, did not use the original values of the process. 
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Rather, it used transformed values; the transformed values were obtained by a coding scheme. For the 
symbolic input, Cheng used one run rule (an explanation for run rules will follow). The run rule that 
he used was the one regarding exceeding ± 3s (where s is the process’s standard deviation). Cheng 
reported that ANNs were 20–40% faster in detecting small process changes than the traditional 
Shewhart and CUSUM control schemes. Later, Cheng [3] used two types of pattern recognizers based 
on different neural network architectures: a multi-layer perceptron trained by back-propagation and a 
modular neural network. Cheng [3] noticed that the modular neural network provided better recogni-
tion accuracy than back-propagation when high strong interference effects existed.

One important application of ANNs is in pattern recognition (for a general introduction to pattern 
recognition that includes using ANNs, the reader is referred to Friedman and Kandel [4]; for the 
more specialized subject of pattern recognition by ANNs only, the reader is referred to Bishop [5]). 
Consequently, there have been many papers on the subject of using ANNs for pattern recognition of 
SPC methods. Anagun [6] used a multi-layered neural network trained with a back propagation 
algorithm for pattern recognition of control charts. A method called histogram representation was 
employed. Hassan et al. [7] used ANNs for pattern recognition of SPC charts and compared two 
methods of data input with the ANNs: raw data and statistical features of data. The ANN with the 
statistical features performed better than the one with raw data.

Pacella et al. [8] applied the adaptive resonance theory (ART) neural networks in their work. They 
have presented a fuzzy ART neural system for quality control. The purpose of the system was the 
detection of abnormal process behavior. Pecella et al. mentioned that the advantage of their system 
over other neural techniques was that it did not require previous knowledge about the abnormal pat-
terns or their mathematical models or probability distribution functions.

In practice, the Shewhart control chart is used with what is called ‘Supplementary Run Rules’. 
These rules indicate when to investigate a process when the points plotted on the Shewhart chart 
exhibit certain behaviors. The run rules can be thought of as primitive pattern recognition methods. 
Koutras et al. [9] presented the subject of Shewhart control charts that are supplemented with addi-
tional rules. Yasui et al. [10] introduced two additional run rules. According to their work, a process 
might be considered out of control if

1. Two of three successive observations exceed ±2.0698 sigma control limits.
2. Two successive observations exceed ±1.9322 sigma control limits.

3 PRODUCTION PROCESSES AND THEIR QUALITY ASSURANCE
In this section, the nature of production processes is described. These processes have the tendency 
to deteriorate with time which will decrease the quality of products. Consequently, there is a need 
for quality-assurance methods to prevent this. The most common method is the Shewhart   chart.

 Any process aiming to produce a consistent and constant product, such as a reinforcing bar of a 
certain diameter or a brick of certain dimensions or a chemical product with specifi c properties, etc. 
would usually produce this product according to the standard required but with some deviation. This 
deviation is usually expected of any process and the allowance made for deviation is called the toler-
ance, t, of the process or product. If the quality we are interested in is called X and the desired value 
of X is ,X  the plot of X against time, t, would look like what is shown in Fig. 1. In this fi gure, the 
vertical axis shows the magnifi ed area of the desired value, ,X  and its tolerances.

X at a certain time, is designated by Xt. For example, we would have X1, X2, X3 corresponding to 
values of X at times t = 1, t = 2, t = 3, respectively. The values of Xt oscillate closely around the 
desired value, .X
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If the process is in good condition, the central limit theorem states that ‘if the sample size n is 
large then the population of all possible sample means approximately has a normal distribution, no 
matter what probability distribution describes the population sampled’ [11]. In an established pro-
cess, n is usually large. This would make the samples of the process cluster around the target or 
desired value .X  If the values of the samples, Xt, are plotted against time, they will oscillate closely 
around the desired value, .X  This would actually make the desired or target value, ,X  the average 
of the process.

When the process is faulty, the assumption of normality is no longer valid. In this case, the meas-
ured values of Xt no longer cluster around X  and start drifting away from it. Hence, when 
constructing a control (Shewhart) chart, which will be shortly explained, Norton [12], suggested the 
following:

‘If interest is in controlling the process to keep measurements as close as possible to a target value, 
T, then the y intercept of the center line should be T ’.

3.1 Introduction to the Shewhart chart

The Shewhart chart is one of the most widely used methods for ensuring that a product is produced 
according to what is desired. It is a quality assurance method achieved by monitoring the behavior 
of a process. More precisely, it is about observing the extent to which a process stays close to its 
mean (or strays away from it). To observe this, the chart needs to use the mean of the process or 
quality, ,X  and its standard deviation, s. The Shewhart chart is made up of seven lines: one line at 
the mean of the process and a line at the following values: ±s, ±2s, ±3s. Figure 2 shows the Shewhart 
chart made against the process of Fig. 1.

Several run rules have been developed to utilize the Shewhart chart. The purpose of these rules 
is to prevent the process from deviating beyond what is permitted. An example of a run is the 
following:

Rule 1: Take action if one point lays outside the ±3s lines.
In general, run rules take advantage of the previously mentioned lines of the Shewhart chart and 

the number of points that have passed them. The run rules would signal whenever they are satisfi ed 
and would not signal otherwise.

Figure 1: A process varying over time.
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4 RESEARCH METHOD
A fl ow meter discrepancy (having higher or lower readings than expected) can happen as a result of 
several factors including:

1. Flow meter drift,
2. A substantial increase or decrease in consumption, and
3. Pipe leakage.

Flow meter drift is often the main reason for fl ow meter discrepancy in an industrial environment. 
As for the second reason, a substantial increase in consumption can only be, usually, caused by an 
addition of a new unit while a substantial decrease in consumption can only be, usually, caused by a 
removal of a working unit. Each unit would cost tens or hundreds of millions of dollars to buy and 
install. Therefore, it can be understood that the addition of a new unit or the removal of a working 
one is a rare event. Consequently, this would make increased (or decreased) fl ow meter readings due 
to installing new (or removing old) units a rarity. Pipe leakage is an issue in municipal water systems 
and not, usually, an issue in industrial water systems because of the high reliability of its pipes. It is 
safe, therefore, to assume that there are only two factors contributing to the uncertainty of measured 
fl ow of a plant (the fl ow meter reading). These two factors are: (a) the true consumption of the plant 
which varies with time depending on the production level, the weather, the reliability of plant equip-
ment, etc. and (b) the reliability and accuracy of the fl ow meter itself.

A dataset of monthly water consumption for an industrial consumer was simulated for this research. 
The main purpose of the research was to develop rational investigations of drifts so as to have optimal 
billing with minimal cost and efforts. Also, the modeling frameworks from this research would pro-
vide systematic ‘alarm’ mechanisms to the operation and maintenance staff; especially whenever a 
fl ow meter drift might occur in future. Earlier, Ben Salamah et al. [1] developed a seasonal time series 
consumption mapping (i.e. for a consumption typical of an industrial consumer) with linear patterns 
and virtual means. Subsequently, the virtual mean mapping was augmented through systematic SPC 
with CUSUM to rationally detect the drift errors in industrial water metering.

When the input data for the pattern of consumption was simulated, noise (representing the natural 
randomness within the consuming systems) was added to it. These input data were labeled as normal 

Figure 2: The Shewhart chart.
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(0) when it was processed by the ANN. Part of these input data had something else besides the nor-
mal randomness added to them. In this part of the data, a function causing a drifting process for the 
data was deliberately inserted. This part of the data was labeled as either drifting upward (+1) or 
drifting downward (−1) depending on the case. The data labeled drifting upward (+1) represented 
cases of a drift that produced fl ow meter readings that are higher than the actual consumption. The 
data labeled drifting downward (−1) represented cases of a drift that produced fl ow meter readings 
that are lower than the actual consumption. Part of the data was saved for testing. This part contained 
both normal and drifting data of both kinds.

4.1 The inputs for the artifi cial neural network

The ANN used in this research is the three-layer back propagation network. It has an input layer, a 
hidden layer, and an output layer. The input layer is made up of two parts: a numerical part and a 
symbolic part. This is similar to what Cheng [2] has done. The purpose of including a numerical part 
is to study the behavior of the process quantitatively while the purpose of including a symbolic part 
is to study the behavior of the process qualitatively.

4.1.1 The inputs for the artifi cial neural network – the numerical inputs
When a process is drifting, the process or quality of interest might take a shape similar to what is 
shown in Fig. 3. The fi gure shows a process or quality with an upward drift. Similarly, a downward 
drift may exist.

In Fig. 3, after the upward drift has started, each point or sample Xt is going to be greater than the 
previous point(s). The opposite would exist if there was a downward drift. Consequently, examining 
the behavior of Xt in relation to its past values might give a clue about the existence of a drift. Hence, 
an index bi was thought of where

 −= −i t t ib X X  (1)

This index would numerically compare the current value of the process Xt to one of its past values 
Xt–i. Comparing the current value of the process with one past value would not be enough. To have 
a good understanding of the behavior of the process, the current value must be compared with many, 

Figure 3: A process with an upward drift.
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n, past values. Therefore, for every value of Xt, n values of bi are going to be produced. To further 
explain, for every Xt we would have b1, b2, b3,…,bi,…,bn.

The n values of the index bi would examine the behavior of the current value of a process in rela-
tion to its past values. Nevertheless, the values of bi obtained would be unique to its particular 
process. The aim of this study is to detect fl ow meter drift. The pumping station under study has 
many fl ow meters. The fl ow that is measured by one fl ow meter differs greatly from that measured 
by other fl ow meters; sometimes, by several magnitudes. This would mean that each fl ow meter 
would require its own simulation which would be exhaustive and computationally expensive. To 
only make one simulation that is capable of being generalized to many fl ows (processes), the authors 
used normalization. The normalized value is computed as follows:

 s

−
= t

t
X X

Z  (2)

Where X  is the mean and s is the standard deviation of the quality or process.
To study the behavior of Zt in relation to its past values an index zbi is defi ned as:
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Then, for every value of Xt, n values of zbi are going to be produced, i.e. for every Xt we would 
have zb1, 

zb2, 
zb3,…,zbi,…,zbn. The values of zbi are made for the numerical inputs to the ANN. 

A question that would rise here is how many values of zbi should be processed by the ANN?
The best number of past values, n, to consider as an input to the ANN was an issue addressed by 

Cheng [2]. He wrote that
‘The proposed neural network is based on the assumption that there are a number of observations 

ready for analysis. The number of data in a sequence provided to the neural network is referred to 
here as the window size. Since rapid computation is of paramount importance for process control, it 
is desirable to minimize input layer size to permit effi cient computation. The determination of the 
window size is based on the consideration of Type I error. A small window size might result in a very 
high Type I error while a large window size may commit a long computation time. In the current 
research, a window size of 16 was selected through experimentation. The results indicated that fur-
ther increasing the window size does not provide any signifi cant improvement in performance’.

It is the experience of the authors of this paper that a drift can exist and be unnoticed for a long 
time. Also, the control in the process under study is done offl ine and is done in more capable com-
puters than the ones that were available when Cheng fi rst published his paper. The authors of this 
paper, therefore, decided to make the ‘window size’ or the number of past values to consider, n, 17.

4.1.2 The inputs for the artifi cial neural network – the symbolic inputs
To study the behavior of any process, the numerical characteristics of this behavior would certainly 
be helpful. The previous sub-section dealt with that; it dealt with the quantitative aspect of the 
 process. A process, nevertheless, can be examined by using a different point of view: The qualitative 
point of view.

The qualitative point of view would see if the behavior of the process is having certain quali-
ties or not. Because these qualities either exist or not exist or exist in a certain condition, 
numerical values cannot be assigned to them. Rather, logical or symbolic values would be used 
for representing them.
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One good method for examining a process qualitatively is to use the previously mentioned run 
rules. Cheng [2] used one run rule as his symbolic input, namely, the rule when the process exceeded 

s± 3 .X  In the current paper, seven run rules were used as the symbolic inputs to the neural network. 
The fi rst fi ve run rules were from Koutras et al. [9]. The run rules demand that the process be 
investigated if

1. One point is outside ±3s lines.
2. Two out of three consecutive points are beyond ±2s lines.
3. Four out of fi ve consecutive points are ±1s or beyond from the mean.
4. Eight consecutive points are on one side of the mean.
5. Six points in a raw steadily increasing or decreasing. The remaining two rules are from Yasui 

et al. [10].
6. Two of three successive observations exceed s± 2.0698 .X
7. Two successive observations exceed s±1.9322 .X

Each rule, R, would give one of three responses:

1. R1, 2,…,7 = +1 if the rule is satisfi ed and the points are greater than the mean.
2. −1 if the rule is satisfi ed and the points are less than the mean.
3. 0 if the rule is not satisfi ed.

4.2 The hidden and output layers.

As in any ANN, there are hidden and output layers. This ANN has only one hidden layer. The 
output layer gives one of three states for the fl ow meter: normal or upward drifting or downward 
drifting. These outputs are qualitative or symbolic. Hence, they were represented by three 
 symbols in the simulation. The normal case had the symbol ‘0’, the upward drifting case had the 
symbol ‘1’, and the downward drifting case had the symbol ‘−1’. The structure of the ANN is 
seen in Fig. 4.

5 RESULTS OF THE SIMULATION
One thousand training epochs were performed. The mean squared error (MSE) per epoch for both 
the training and cross-validation phases are shown in Fig. 5 and Table 1.

A number of data, 1870, was saved for testing. The confusion matrix for the test is shown in 
Table 2. For the data spared for testing, the confusion matrix shows the performance of the ANN. 
The confusion matrix compares the actual output with the desired output. It shows how many times 
the neural network made the right decision and how many times it was ‘confused’. For example, 
there have been a total of 393 cases with an actual upward drift (State (1)). The ANN rightly identi-
fi ed 296 of them as they were, having an upward drift. The network confused 9 cases as having 
downward drift and 88 cases as being normal while actually they were cases of upward drift.

It can be seen from Table 2 that the ANN developed was correct 89.52% of the time in determin-
ing the status of the fl ow recorded by a fl ow meter.

6 CONCLUSION
Failing fl ow meters produce erroneous measurements that disturb the control, organization, regulation, 
and planning processes for a water system. Previously, work was presented that detected industrial 
water fl ow meter drift by the CUSUM method. In this paper, an alternative method called artifi cial 
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Figure 4: The structure of the artifi cial neural network.

neural network was introduced. The ANN presented in this paper was the typical three-layer neural 
network. The input layer was made of 24 inputs. Seven of them were symbolic inputs while the remain-
ing 17 were numerical inputs. The network was trained and tested and the results were satisfactory.

ACKNOWLEDGEMENTS
The authors would like to thank Prof. Chuen-Sheng Cheng from the Yuan Ze University for his help 
with this paper. They would also like to thank the two anonymous reviewers for their suggestions.



520 M. Ben Salamah, et al., Int. J. Sus. Dev. Plann. Vol. 6, No. 4 (2011) 

REFERENCES
 [1] Ben Salamah, M., et al., The detection of fl ow meter drift by using statistical process control. 

International Journal of Sustainable Development and Planning, To be published.
 [2] Cheng, C.S., A multi-layer neural network model for detecting changes in the process 

mean. Computers & Industrial Engineering, 28(1), pp. 51–61, 1995. doi:http://dx.doi.
org/10.1016/0360-8352(94)00024-H

Table 1: Training results for 1000 epochs.

Best networks Training Cross-validation

Epoch # 997 968
Minimum MSE 0.01574738 0.016462574
Final MSE 0.01576385 0.017043336

MSE = mean squared error.

Table 2: The confusion matrix.

Desired

Output State (−1) State (1) State (0)
State (−1) 266 9 6
State (1) 21 296 13
State (0) 59 88 1112

MSE versus Epoch

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 100 199 298 397 496 595 694 793 892 991

Epoch

M
SE Training MSE

Cross Validation MSE

Figure 5: Mean squared error for training and cross-validation.



 M. Ben Salamah, et al., Int. J. Sus. Dev. Plann. Vol. 6, No. 4 (2011)  521

 [3] Cheng, C.S., A neural network approach for the analysis of control chart patterns. Inter-
national Journal of Production Research, 35(3), pp. 667–697, 1997. doi:http://dx.doi.
org/10.1080/002075497195650

 [4] Friedman, M. & Kandel A., Introduction to pattern recognition: statistical, structural, neural 
and fuzzy logic approaches. 1 edn. Series in Machine Perception and Artifi cial Intelligence, 
eds H. Bunke & P.S.P. Wang., World Scientifi c: London, 32, p. 329, 1999.

 [5] Bishop, C.M., Neural Networks for Pattern Recognition, Oxford: Oxford University Press, 
482, 2005

 [6] Anagun, A.S., A neural network applied to pattern recognition in statistical process con-
trol. Computers & Industrial Engineering, 35(1–2), pp. 185–188, 1998. doi:http://dx.doi.
org/10.1016/S0360-8352(98)00057-6

 [7] Hassan, A., et al., Improved SPC chart pattern recognition using statistical features. Interna-
tional Journal of Production Research, 41(7), pp. 1587–1603, 2003.

 [8] Pacella, M., Semeraro, Q. & Anglani, A., Manufacturing quality control by means of a Fuzzy 
ART network trained on natural process data. Engineering Applications of Artifi cial Intelli-
gence, 17(1), pp. 83–96, 2004. doi:http://dx.doi.org/10.1016/j.engappai.2003.11.005

 [9] Koutras, M.V., Bersimis, S. & Maravelakis, P.E., Statistical process control using Shewhart 
control charts with supplementary runs rule. Methodology and Computing in Applied Prob-
ability, 9(2), pp. 207–224, 2007. doi:http://dx.doi.org/10.1007/s11009-007-9016-8

[10] Yasui, S., Ojima, Y. & Suzuki, T., Generalization of the Run Rules for the Shewhart Control 
Charts in Frontiers in Statistical Quality Control 8, eds H.J. Lenz & P.T. Wilrich, Physica-
Verlag: New York. pp. 207–219, 2006.

[11] Bowerman, B.L., O’Connell, R.T. & Koehler, A.B., Forecasting, Time Series and Regression 
An Applied Approach. Thomson Broks/Cole. p. 686, 2005.

[12] Norton, M., A Quick Course In Statistical Process Control. Technology Skills., Upper Saddle 
River, New Jersey: Pearson Prentice Hall. p. 56, 2005.


