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Preface

The generalized function is one of the important branches of mathematics
that has enormous application in practical fields. Especially, its applications
to the theory of distribution and signal processing are very much noteworthy.
The method of generating solutions is the Fourier transform, which has
great applications to the generalized functions. These two branches of
mathematics are very important for solving practical problems. While I was
at Imperial College London (1966—1969), I attended many lectures delivered
on fluid mechanics topics by Sir James Lighthill, FRS. At that time I was
unable to understand many of the mathematical ideas in connection with
the generalized function and why we need this abstract mathematics in the
applied field. I tried to follow Lighthill’s book An Introduction to Fourier
Analysis and Generalized Functions, published by Cambridge University
Press, 1964. His book is very compact (only 79 pages) and extremely
stimulating, but he has written it so elegantly that unless one has good
mathematical background, the book is very hard to follow. I understand that
a non-expert reader will find the book very hard to follow because of its
compactness and too many cross-references. Mathematical details are very
minimal and he sequentially explains from one step to another skipping
many intermediate steps by the cross references. Lighthill followed the ideas
originally described by Professor George Temple’s Generalized Functions,
Proc. Roy. Soc. A, 228, 175-190, (1955). Lighthill kept the theory part as
described by Temple. In Dalhousie University I used to give a course on
Mathematical Methods and their Applications to the undergraduate and
graduate students for several years. I used Fourier transforms and generalized
functions in that course. To make it understandable to the student I had to
take recourse to some engineering textbooks where the applications are found
in this subject. I followed some engineering application of generalized
functions and its solution technique using the Fourier transform method.

This book grew partly out of my course given to the undergraduate and
graduate students at Dalhousie University, Halifax, Nova Scotia, Canada;
and partly from reading the books by Temple and Lighthill. This book



explains clearly the intermediate steps not found in any other book. The
book leans heavily towards Lighthill’s book, but I have bridged the gap of
mathematical deductions by clearly manifesting every important step with
illustrations and mathematical tables. I think a layman can also follow my
book without much difficulty. I must admit that this book is written in such
a way as if | have revisited Lighthill’s book An Introduction to Fourier
Analysis and Generalized Functions. This book, hopefully, will be useful to
the non-expert and also the experts alike. With this intention, the book is
prepared in my own way collecting some additional material from some
other textbooks including Professor D.S. Jones’ book on Generalized
Functions, published by McGraw-Hill Book Company, New York, 1966. I
have borrowed some ideas from Professor Jones’ book. Specially, I borrowed
some important practical unsolved examples that I solved myself for the
benefit of the reader. It is my hope that the reader will gain some insight
about this important but esoteric mathematical subject.

The first chapter of the book deals with the introductory concept of Fourier
series, Fourier integrals, Fourier transforms and the generalized function.
The theoretical development of the Fourier transform is described and the
first generalized function is defined with some illustrations. Some important
examples are manifested in this chapter. Some interesting exercises are
included at the end of the chapter.

Chapter 2 deals with the formal definition of the generalized function. A
clear-cut definition of a good function and a fairly good function as illustrated
by Lighthill is demonstrated in this chapter. The difference between an
ordinary function and a generalized function is given with some examples.
Even and odd generalized functions are clearly defined. The chapter ends
with some useful exercises.

Chapter 3 consists of Fourier transforms of particular generalized functions.
This chapter deals with the integral power of an algebraic function, non-
integral powers, the Fourier transforms of x" #n|x|, x™¢n |x|, x™¢n|x|sgn(x)
together with the summary of results of Fourier transforms. The chapter
concludes with some exercises.

Asymptotic estimation of Fourier transforms are discussed in details in
Chapter 4. First we have defined the Riemann-Lebesgue lemma which is
important to obtain the asymptotic value of a generalized function. The
asymptotic expression of the Fourier transform of a function with a finite
number of singularities is discussed. We demonstrated solutions of some
generalized functions using asymptotic expressions. Fourier transforms play
amajor role. Some important numerical solutions of some integrals are listed
in Table 4.1. Whereas Table 4.2 contains a short list of Fourier transforms
of 18 important generalized functions at a glance. The chapter ends with
some important exercises.



Chapter 5 contains the Fourier series as a series of generalized functions.
We demonstrated how to evaluate the coefficients of a trigonometric series.
Some practical examples such as Poisson’s summation formula and the
asymptotic behaviour of the coefficients in a Fourier series are illustrated.
This chapter concludes with some exercises.

We conclude the book (Chapter 6) with an important topic concerning the
fast Fourier transform. It is a numerical procedure which is fast, accurate
and efficient to determine the Fourier coefficients that are the Fourier
transforms using an algorithm developed by Cooley and Tukey in 1965.
Some preliminary studies of the Fourier transform with ample examples are
also demonstrated in this chapter by using analytical and graphical methods.
We have not reiterated the algorithm of Cooley and Tukey, rather we have
given a numerical view of how it works, citing a practical example in the
study of wave energy spectrum density as illustrated elegantly by Chakrabarti
(1987). A handful of exercises are included and some references are cited at
the end of the chapter.

The book concludes with three appendices. Appendix A deals with Fourier
transforms of some important generalized functions. Appendix B is
concerned with some important properties of Dirac delta §(x) functions and
Appendix C contains a comprehensive list of some important references
concerning with the generalized functions and the application of the fast
Fourier transform for further reading. A subject index is also included at the
end of the book.

While it has been a joy to write such a comprehensive book for a long
period of time, the fruits of this labour will hopefully be in learning of the
enjoyment and benefits realized by the reader. Thus the author welcomes
any suggestions for the improvement of the text.

Matiur Rahman, 2011
Halifax, Canada
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