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Abstract 

The Bowen Basin contains the largest coal reserves in Australia. Prolonged 
heavy rainfall during the 2010-2011 wet-season severely affected industry 
operations with an estimated economic loss of A$5.7 billion (£3.8 billion).  
There was no explicit warning of the exceptionally wet conditions in the 
seasonal forecast from the Australian Bureau of Meteorology, which simply 
suggested a 50-55% probability of above median rainfall for the Bowen Basin.   
     In this study, the value of using neural networks, a form of artificial 
intelligence, to forecast monthly rainfall for the town of Nebo in the Bowen 
Basin is explored.   Neural networks facilitate the input of multiple climate 
indices and the exploration of their non-linear relationships. Through genetic 
optimisations of input variables related to temperatures, including atmospheric 
temperatures and sea surface temperatures expressed through the Inter-decadal 
Pacific Oscillation and Niño 3.4, it is possible to develop monthly rainfall 
forecasts for Nebo superior to the best seasonal forecasts from the Bureau of 
Meteorology.  As neural networks employ far superior technology for exploring 
the patterns and relationships within historical data including climate indices 
they are to be preferred.   
Keywords: rainfall, neural network, forecast, Southern Oscillation index 
Interdecadal Pacific Oscillation, coal, mining. 

1 Introduction 

The very wet summer of 2010/2011 severely affected mining operations in 
Queensland, Australia. It is estimated that 85% of Queensland coalmines had to 
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either restrict production, or close entirely. By May 2011, Queensland’s coal 
mining sector had recovered to only 75% of its pre-flood output. These events 
lead to a loss of A$5.7 billion (£3.8 billion) equivalent to 2.2% of Queensland’s 
gross state product for the financial year ending June 2011. A report prepared for 
Australia’s National Climate Change Adaptation Research Facility examined the 
impacts of the extreme weather event on Queensland’s mining industry and 
concluded that currently available climate forecasts are not useful enough to the 
industry, lacking localised information, and other micro details, to enable 
focused pro-active planning and risk management [1].  The report suggested that 
the mining industry would benefit from obtaining and using more precise 
seasonal and shorter-term rainfall forecasts. 
     The Australian Bureau of Meteorology, BoM, currently uses both statistical 
and dynamic forecasting models to generate seasonal rainfall predictions up to a 
year in advance.  Statistical forecasting methods rely on the availability of 
climate indices, for example the El Niño Southern Oscillation (ENSO), and 
historical data.  Dynamic forecasting systems, such as general circulation 
models, use computer simulations that attempt to directly model physical 
processes relevant to climate and climate change.  The dynamic models are more 
expensive to operate, and despite substantial research efforts and technological 
advances, are still unable to consistently outperform the more simple statistical 
prediction systems [2].  
 

 

Figure 1: Seasonal rainfall forecast issued in November 2010 by the 
Australian Bureau of Meteorology. 

     The seasonal rainfall forecast for Australia issued by the BoM in November 
2010 indicated a probability of 50-55% of above median rainfall for the Bowen 
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Basin for December 2011 to February 2011, fig. 1.  This rainfall forecast was 
accurate when compared with observed rainfall for the entire three-month period. 
However, it did not include any indication of the magnitude and distribution of 
the rainfall within this three-month period.   
     In addition to the forecast from the BoM, the Queensland government issues 
two seasonal weather forecasts of comparable reliability also based on statistical 
methods using climate indices [3].  The Queensland government forecasts issued 
in November 2010 were for “a higher than normal probability of exceeding 
median rainfall across much of the state” for the period November to January 
and also for the period November to March [4].  There was no forecast specific 
to the flood periods and no mention of anticipated catastrophic flooding.  
     The statistical models produced by the BoM and Queensland government use 
a limited number of input variables, and often assume that there are linear 
relationships between those variables and rainfall.  More sophisticated statistical 
modelling techniques, such as neural networks based on artificial intelligence, 
enable simultaneous inputs of many variables, and can also accommodate non-
linear relationships common in historical rainfall data and climate indices.  
     Neural networks are not routinely used by government agencies in Australia 
to generate seasonal rainfall forecasts but have been used in other parts of the 
world, particularly in regions subject to highly variable monsoonal rainfall, 
reviewed in Abbot and Marohasy [6].  They are massive parallel-distributed, 
information-processing systems with characteristics resembling the biological 
neural networks of the human brain. In essence, they mine data for historical 
patterns that can then be applied to predict future events. The application of this 
approach requires sufficient relevant historical data, the presence of patterns that 
can be detected, and their continuance into the future period where forecasts are 
desired.  From this perspective, the neural network approach does not differ from 
other statistical models, but is much more adaptable in recognising and utilizing 
complex patterns. Preliminary investigations comparing the skill of rainfall 
forecasts from the BoM’s general circulation model with output from a simple 
neural network for 17 sites in Queensland suggest they have can provide a more 
skilled seasonal forecast [6].  
     This study examines the application of neural networks for forecasting 
monthly rainfall one month in advance (one-month lead-time) for the site of 
Nebo, a town located close to a major open pit coal mine operated by Rio Tinto 
at Hail Creek in the Bowen Basin of Queensland.  In particular, it investigates 
the potential to generate forecast signals corresponding to periods of very heavy 
rainfall, with a lead-time that would potentially alert mine operators of 
impending flood risks.    The site of Nebo was chosen because of its proximity to 
a coal mine in the Bowen Basin and because it is a site with over 120 years of 
historical rainfall data. 
     Input variables used in this study included the ENSO climate indices used by 
the BoM and Queensland government, Niño 3.4 and SOI respectively, and also 
the Inter-decadal Pacific Oscillation (IPO) that is thought to modulate the 
influence of ENSO on rainfall along the east coast of Australia [7  9]. 
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2 Methods  

Neural network software, NeuroSolutions 6 for Excel (NeuroDimensions, 
Florida, USA), was used with an Elman neural network.  The desired output, 
which is the observed rainfall, was assigned as the monthly rainfall with a lead-
time of one month ahead of the current month.  For each input data set, the 
neural network was optimised for 3000 epochs using a genetic opimisation 
algorithm for 10 or 20 generations.  Training sets comprised approximately 85% 
of the total data with the remaining 15% used for testing.   The test period, which 
is also the forecast period, was for 137 months from August 2000 to December 
2011 that included the exceptionally wet summer of 2010-2011.    
     The monthly rainfall data for Nebo (station 033054) were obtained from the 
BoM.  Atmospheric temperature data, both maximums and minimums, were 
obtained from the Te Kowai Experimental Station in Mackay (station 033047) 
available from the year 1908. Values for SOI were also sourced from the BoM.  
Values for the climate index Niña 3.4 were sourced from the Royal Netherlands 
Meteorological Institute Climate Explorer – a web application that is part of the 
World Meteorological Organisation and European Climate Assessment and 
Dataset project.  Values for IPO were provided by Chris Folland from the UK 
Met Office.  
     Six unary input data sets were constructed corresponding to monthly values 
of rainfall (Rain), Southern Oscillation Index (SOI), Inter-decadal Pacific 
Oscillation (IPO), Niño 3.4 (Nino), maximum atmospheric temperature (MaxT), 
and minimum atmospheric temperature (MinT).  Each unary data set comprised 
the current monthly value, plus twelve lagged values for the previous twelve 
months.   Binary and ternary combinations of these unary sets were also used as 
inputs, Table 1.   In this study a total of 62 combinations were tested, Table 1.  
Table 1 shows the range of Root Mean Square Error, RMSE, for unary, binary, 
ternary, quaternary and quinary inputs and also the specific combination that 
gave the lowest RMSE.  RMSE gives a simple, transparent quantitative measure 
of the difference between the forecast rainfall and observed rainfall.  The lower 
the RMSE the smaller the difference between the forecast and observed rainfall 
and therefore the more skilful the forecast.    
      unary data set was defined as the current monthly value of one of these input 
parameters, plus the twelve corresponding lagged values for the previous twelve 
months, comprising a total of 13 input columns to the neural network.  A binary 
data set was defined as a combination of two unary data sets.  For example the 
combination of 26 input data columns for SOI and MaxT (SOI + MaxT) 
comprises a binary set.  Similarly, ternary combinations of the unary sets consist 
of 39 input data columns, as for example the combination of SOI, MaxT and 
Rain (SOI + MaxT + Rain).    
     In order to show the benefits of the larger data sets and lagging for the full 12 
months, data sets that lagged for only 1, 2 and 3 months were also constructed 
and inputted into the neural network. Lagging for up to 3 months produced 4 
input data columns for each unary set.  These combinations are not shown in 
Table 1.  
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Table 1:  Combinations of input variables tested in the neural network. 

Input data 
sets 

Number of 
Combinations 

Range of 
RMSE 

     (mm) 

Combinations giving lowest  
RMSE values (mm) 

Unary 6 81.6 - 
67.9 

Rain 67.9 

Binary 15 91.0 – 
63.7 

MaxT+IPO 63.7 

Ternary 20 76.0 – 
60.2 

Rain+MinT+SOI 
Max+/MinT+SOI 
SOI+Nino+MinT 

60.2 
61.9 
63.4 

Quaternary 15 71.4 – 
64.0 

Rain+MinT+SOI+IPO 64.0 

Quinary 6 72.4 – 
55.4 

Rain+MaxT+MinT+IPO+Nino 
 

55.4 

Total  62    

3 Results  

Linear correlations between many individual climate indices and rainfall have 
been examined for different areas across the Australian continent. Typically, 
concurrent correlations fall in the range of r = 0 to 0.5 and show high variability 
both spatially and temporally [10]. Despite these poor correlations, single input 
variables, typically SOI, continue to be used by government agencies for 
seasonal rainfall forecasting in Australia.  These forecasts are typically presented 
as shaded or coloured maps with a conditional probability of rainfall being 
greater than or less than a seasonal median value (e.g. fig 1).  In order to generate 
these maps, numbers representing an actual rainfall forecast must first be 
generated.  The government agencies, however, do not provide the actual 
numbers (i.e. the actual rainfall quantities) to the public or industry.   That is, 
government agencies do not present their forecasts as time series charts (e.g. fig 
5).  In order to compare and contrast output from the neural network method of 
forecasting with output from the simple statistical models used by government 
agencies we begin by showing the likely output from government models as time 
series charts, figs. 2 and 3.    
     There is no reason to believe that output from a simple linear statistical model 
generating a rainfall forecast using only SOI, and lag-times of one, two or three-
months as reported in the literature [e.g. 2], would give a rainfall forecast any 
better than output from a more sophisticated neural network.  The rainfall 
forecast from the neural network using only SOI, the index favoured by the 
BoM, gives a poor representation of monthly rainfall for Nebo, fig. 2, reflected 
in the high values of RMSE of 78.8 mm and low value of r = 0.26.  
     The monthly rainfall forecast for Nebo is only improved marginally by 
introducing two additional climate indices as input, Nino and IPO, fig. 3, 
reflected in the slightly improved RMSE of 71.1 mm and r = 0.50.  A rainfall 
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forecast for Nebo with a comparable level of skill can be derived from a neural 
network by simply using rainfall data as an input, fig. 4.  

 

Figure 2: Monthly rainfall forecast for Nebo with one-month lead-time using 
one, two and three month lag-time for unary input data set SOI 
(RMSE 78.8 mm, r = 0.26). 

 

Figure 3: Monthly rainfall forecast for Nebo with one-month lead-time using 
one, two and three month lag-time for ternary inputs SOI, IPO & 
Nino (RMSE 71.1 mm, r = 0.50). 
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Figure 4: Monthly rainfall forecast for Nebo with one-month lead-time using 
only rainfall including lagged values to 12 months, without climatic 
indices (RMSE 67.9 mm, r = 0.43). 

     Comparing output from the neural network generated using just monthly SOI 
values as input, fig. 2, with the output generated using just monthly rainfall 
values as input, fig. 4, would suggest there are more useful patterns in the 
historical rainfall data than in the SOI index.  Sensitivity analysis of the output 
for the forecast based only on rainfall data indicated that rainfall 11 and 12 
months previously (i.e. 11 and 12 month lagged inputs) significantly influenced 
the forecast.   It is notable that his output did not accurately forecast the flooding 
rains of January 2011.  
     The neural network approach has the advantage that it enables input of a large 
number of variables simultaneously, with no assumptions as to which may be 
most significant in the prediction of rainfall for a specific lead period.   If 
particular columns of inputs within an input set, or an entire unary set, are not 
useful for prediction, there is a high probability these will be preferentially culled 
by the genetic algorithm, thus progressively refining the model by retaining only 
more significant inputs.   
     It is possible to generate a much more skilled rainfall forecast for Nebo by 
inputting historic rainfall, local minimum atmospheric temperatures and also SOI 
reflected in the lower RMSE of 60.2 mm and r = 0.67, Table 1.  Sensitivity 
analysis of this forecast indicated lagged minimum temperature had a significant 
influence on the forecast.  
     The most skilled rainfall forecast for the neural network was achieved with 
the quinary input data set comprising rainfall, maximum and minimum 
temperature, Niño 3.4 and IPO, Table 1. This represents the forecast with lowest 
value of RMSE for the 62 examples tested, Table 1.   This forecast was further 
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improved through post-processing of the output, for example by combining two 
output profiles by computing a weighted average of forecast rainfall at each time 
period, fig. 5.   In particular, a linear combination of the outputs shown from the 
ternary input data set (Rain + MinT + SOI) and the quinary input set (Rain + 
MaxT + MinT + Nino + IPO) that gave the forecast with the lowest RMSE.  The 
outputs were combined in the ratio 0.7:1.3 and then the result divided by a factor 
of  2. The RMSE of 54.7 mm for the combination is lower than for either of the 
individual outputs.   
 

 

Figure 5: Monthly rainfall forecast for Nebo with one-month lead-time 
generated by combining two forecasts and post processing. (RMSE 
54.7 mm, r = 0.74). 

4 Discussion and conclusion 

The basic method used to forecast seasonal rainfall in Queensland has not 
changed significantly for two decades [3]. The Queensland government and the 
BoM still use climate indices based on ENSO and simple linear statistical 
models to compute a conditional probability of rainfall being greater than or less 
than a seasonal median.   The forecast, even if it is accurate for the 3-month 
period of the designated season, is largely meaningless for mine scheduling, 
because it gives no indication of the likely magnitude or distribution of rainfall 
within the season [1, 5]. For example, catastrophic flooding occurred in the 
Bowen Basin in December 2010 because rainfall was concentrated in time even 
though the overall seasonal rainfall may have been only marginally above the 
median  
     The situation at the Hail Creek mine was summarised in the Queensland 
Government Commission of Inquiries report: 
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“At the end of December 2010 at Hail Creek mine, water 
storages were calculated to be approximately 98 percent 
full; by the end of January 2011, the storage facilities were 
at 105 per cent capacity. The mine was storing 
approximately seven gigalitres of water on-site in dams and 
pits. Water was continually pumped from high priority 
areas into low priority areas around the site in an effort to 
maintain some operations. Rio Tinto sought, and was 
granted, authorisation by DERM [Department of 
Environment and Resource Management] to release water 
into surrounding watercourses in January 2011. All sale 
contracts were suspended by reason of the wet weather 
from 24 December 2010. Pits used for the purpose of 
storing water were unable to be mined until dewatering 
activities had begun; supplies of explosives were delayed; 
and resources were being deployed to address the water 
located in the pits. The sales suspension was lifted on 12 
May 2011. As at September 2011, the mine was still not 
operating at full production on a sustained basis.” 

 
     The same report recommends that mine owners and government agencies 
need to complete risk assessments in preparation for wet seasons and that these 
assessments need to take place before 1 November each year [5].  However, 
central to any such assessments is access to a reliable and appropriate rainfall 
forecast.  None currently exists, though it is assumed that the BoM and 
Queensland government seasonal forecasts are somehow adequate.  
     The big investments by the Australian government in computing power and 
technology in the climate science area have been in the development of general 
circulation models.  These models, however, are even less reliable for rainfall 
forecasting than the simple statistical models used to advise the Queensland 
public and mining industry of the probability of 50-55% of above median rainfall 
for the summer of 2010-11.  
     Neural network based on artificial intelligence, like the simple statistical 
models, use historical data and climate indices, but neural networks represent a 
leap forward in computational power.   
     In this study 62 combinations of input variables were tested, Table 1.  A 
quinary combination of rainfall, maximum and minimum temperatures, IPO and 
Niño 3.4 gave the most skilled forecast, Table 1.  This forecast was further 
improved by combining it with output from a ternary input data set, fig. 5.  This 
forecast differentiated to some extent between the recent wet summer months, 
and dryer summer months during the extended drought, fig. 5.  The forecast, 
however, failed to forecast the wetter summer in 2009-10, fig. 5.   It is likely that 
further refining of the methodology based on neural networks can improve the 
correspondence between forecast and observed rainfall profiles. 
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     The output charted in figure 5 could be regarded as comprising multiple 
signals, oscillations on the y-axis with regards to time. In particular it may be 
useful to consider rainfall as composed of an underlying signal, e.g. figure 4, 
with forecast significantly improved by superimposing combinations of signals 
from climate indices and atmospheric temperature, figure 5. Improvements in 
understanding may be achieved by decomposition of signals at both the input 
and output stage.    
     Sensitivity analysis suggests that the inputs important to the model are not 
intuitively obvious.  For example lagged-values to 10 and 11 month for 
minimum temperature were important to Figure 5.  
     The results presented in this study are considered preliminary with potential 
for significant improvement in terms of improving the skill of the monthly 
forecast one month in advance. Other studies of flood forecasting, specific to 
south-east Queensland, suggest that the neural network technique can be easily 
extended to a forecast with a three month lead-time (i.e. a forecast three months 
in advance) without a significant deterioration in skill [11].  
     In conclusion this study demonstrates that superior seasonal rainfall forecasts 
can be achieved by deploying appropriate modern mathematical techniques such 
as neural networks.  Neural networks can accommodate the complexities of 
multiple non-linear relationships inherent in rainfall data. There is reason to be 
optimistic that the forecasts so far achieved using neural networks can be further 
improved, and provide a means for the mining industry in the Bowen Basin to 
have access to improved rainfall forecasts reducing the risk of significant 
economic losses associated with exceptional flood events. 
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