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Abstract 

This paper describes a multiobjective approach for the siting and sizing of the 
components of a regional wastewater system. This approach can be particularly 
helpful for the coherent and harmonious implementation of the Water 
Framework Directive. Three criteria are considered for finding efficient 
solutions. A simulated annealing algorithm improved by a local search algorithm 
is used and the results of three case studies are presented and compared. 
Keywords: wastewater systems, multiobjective models, simulated annealing. 

1 Introduction 

The worldwide concern about water and sanitation has been expressed in 
initiatives like the United Nations Millennium Development Goals. The target to 
reduce by half the population without sustainable access to safe drinking water 
and basic sanitation is incorporated in the goal to ensure environmental 
sustainability. If this target is to be met appropriate wastewater systems have to 
be implemented. These systems are often designed at a local level. However, 
better solutions both from the economic and the environmental points of view 
can be obtained with regional planning. 
     This work describes a multiobjective approach to regional wastewater system 
planning. In this type of system, global cost is usually the criterion that is 
optimized, making it a single-objective problem. The other indicators for 
achieving a sustainable development are often included as problem constraints, 
considering some upper and lower limits. However, for some indicators, these 
limits may be difficult to establish, which can make them easier to handle as 
criteria. Since the criteria to be optimized are usually incommensurable, it is 
impossible to find a solution where all these criteria are optimized 
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simultaneously, given that the improvement of one results in the deterioration of 
another. This means that no optimal solution can be found. Still, there are 
efficient solutions that can be reached, these are non-dominated solutions also 
known as Pareto solutions.  

2 Literature review 

The first studies on wastewater system planning were carried out in the 1960s. 
The great majority of these studies tackle the waste load allocation (WLA) 
problem, which comprises the determination of the required pollutant removal 
level at a number of point sources of a stream (Loucks et al [15], Katapodes and 
Piasecki [10]). Another type of wastewater planning problem is the siting and 
sizing of the different components of a regional wastewater system (Leighton 
and Shoemaker [13], Tyteca [18]). Improved computational capacities and 
optimization methods made it possible to solve complex models incorporating all 
the features occurring in the cost minimization of siting and sizing the different 
components of a regional wastewater system (Wang and Jamieson [20]). Sousa 
et al. [16] presented a model and the respective computational application to 
solve this type of problem, called Regional Wastewater Systems Planning 
(RWSP). The water quality in the receiving stream was taken into account by the 
introduction of constraints for the maximum wastewater discharge in each 
treatment plant. In Cunha et al. [7], the RWSP model was improved by 
incorporating a water quality model to allow the determination of water quality 
parameters after discharge from wastewater treatment plants. This improvement 
enables the model to guarantee the water quality in the river, besides optimizing 
the network system design. 
     Other indicators that could be considered as criteria apart from the minimum 
cost configuration, particularly for WLA problems, came later: Bishop et al. [2] 
and Lohani and Adulbhan [14] attempted to minimize the deviation of the water 
quality goals and Tung [17] proposed new indicators in order to optimize four 
different criteria. These criteria were the maximization of the total waste load 
allocation, the maximization of the dissolved oxygen (DO) in the stream, the 
minimization of the equity measure between the various dischargers and the 
minimization of the major risk of breaching the water quality standards. With the 
aim of reaching efficient solutions considering the uncertainties, Burn and 
Lence [4] formulated models for the minimization of different criteria 
corresponding to a deviation measure of the DO levels. Cardwell and Ellis [5] 
used a criterion consisting of the number of violations of the DO standards, 
which was minimized together with the cost of the system. In Lee and Wen [12] 
the objective of maximization of the assimilative capacity in a multiobjective 
approach was introduced for the first time. The same work presented a list of 
previous studies, with the criteria used, and also showing the tendency for 
change from single-objective to multiobjective approaches. Multiobjective 
decision analysis under uncertainty has been proposed by Chang et al. [6] to 
solve potential conflicts between safeguarding water quality and economic 
development. Based on the concept of sustainability, Balkema et al. [1] defined 
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three dimensions for multiobjectivity: economic, environmental and socio-
cultural. They thus indicated different criteria capable of being optimized, such 
as energy use, land use, nutrient loss, waste production and social acceptance. 
Since there are various criteria that can be optimized, a multiobjective approach 
brought important advantages to the analysis. In water resources problems, Burn 
and Yulanti [3] were the first to use a genetic algorithm in order to find a Pareto 
set of solutions in a three-objective problem (the objectives were the balance 
between the various dischargers, the cost of the system, the water quality in the 
receiving stream, expressed by the number of standard DO violations). More 
recently, the non-dominated sorting algorithm II was used by Yandamuri et 
al [21]. Ghosh and Mujumdar [8] used a fuzzy multiobjective model for 
minimizing the risk in a river water quality management problem. A new global 
search algorithm developed recently, the Probabilistic Global Search Lausanne, 
was used to solve the model. Jia and Culver [9] applied a robust genetic 
algorithm to total maximum daily load allocations. 
     This paper follows previous work by the authors. It describes a multiobjective 
approach used to solve the siting and the sizing of the different components of a 
regional wastewater system. The implementation of this approach makes use of 
the decision-aid model presented in Cunha et al. [7].The simulated annealing 
algorithm (SA) described in Sousa et al. [16] improved by a local search 
algorithm and including the parameters calibrated by Zeferino et al. [22] is used. 

3 Multiobjective approach 

Multiobjective analysis consists either of the generation of solutions from an 
infinite number of alternatives, using systematic methods, or of the selection of a 
solution from a finite set of alternatives, also known as multiattribute analysis, 
using outranking methods. Since there are an immensurable number of 
alternatives in wastewater system planning, the solution has to be found by a 
multiobjective analysis based on the generation of solutions. 
     Three objectives for planning the wastewater system were established for this 
study. These objectives match the indicators that usually need to be optimized: 
the minimization of the capital cost of the system (Ci); the minimization of the 
operating cost (Ce); and the maximization of dissolved oxygen in the river (DO). 
     The first indicator is related to the initial investment in the wastewater 
system, and includes equipment and construction costs. The second concerns the 
cost incurred during the lifetime of the system, consisting of the recurrent costs 
of the facilities and the equipment, including energy costs. These operating costs 
are also related to the initial cost. The last indicator is related to the water quality 
in the river, measured in dissolved oxygen, since this is one of the most 
important indicators of water quality. 
     The approach most often used to solve models with more than one objective 
is based on the utility theory, turning multiple objective problems into a single 
objective problem prior to optimization. This is done by means of a weighted 
summation of the individual objectives. But it would be useful to the decision-
maker if there were a set of non-dominated solutions that would allow him to 
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note the trade-offs between the objectives when deciding on a solution. Non-
dominated solutions are also called Pareto solutions. This set of solutions 
represents the frontier with the best solutions that can be achieved. This happens 
because no enhancements can be found, since the improvement of one objective 
result in the deterioration of another. 
     Following the weighted summation approach and considering the objectives 
previously defined, the objective function will be:  

( )∑
=

×=
3

1
F Minimize

i
ji

~
i xfw          (1) 

where F: aggregate objective function; wi: weighting values; ( )ji
~

xf : normalized 
criteria to optimize. 
     Since the three objectives correspond to different units with variations of 
different magnitudes, their scores are standardized (2). This standardization 
makes the objectives dimensionless, while transforming the value of the 
objective to a proportion contained in the interval between the lowest and highest 
score. 
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     The weights wi set the priorities for the decision criteria, indicating the 
relative importance of each objective. An accurate distribution of weights is one 
of the bigger challenges in a multiobjective optimization. This usually requires a 
specific process involving different stakeholders (Lahdelma et al. [11]). 
However, the process of finding the right weights to attribute is not within the 
scope of this work. The weights must be strictly positive for at least one 
objective, and have a total sum equal to one.   
     The single-function F (3) to be minimized is thus expressed by the sum of the 
weights multiplied by the standardized criteria, giving the following expression: 
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where Ci: capital cost;  Ce: operating cost; DO: minimum value of the Dissolved 
Oxygen observed in the river. WCi, WCe and WDO: weights. 

The variables with superscripts in equation (3) correspond to the maximum 
and minimum values. The Cimin, Cemin and DOmax are obtained from the 
respective minimization and maximization functions. The other extreme values 
of these indicators are removed from the worst results obtained for those 
indicators in the other optimizations. 
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4 Case studies 

The study used three different cases, corresponding to 3 test problems. These 
problems try to correspond to real-world problems, comprising similar 
characteristics (Figure 1). They were defined according to rules regarding shape 
and topography, location and size of population centers, the wastewater 
generation rate and location and maximum discharge at treatment plants. The 
implementation method for this can be found in Zeferino et al [22]). The three 
cases selected have different characteristics, in particular concerning the values 
of the ridges’ orientations.  
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Figure 1: Shape, topography and location of the urban centers of the three 

regions used for this study. 

     The first phase of the implementation of the multiobjective approach was to 
determine the extreme values of the three criteria. This was done using three 
single objective functions: minimize Ci; minimize Ce; maximize DO. The SA 
algorithm requires the use of accurate parameters, essential for finding good 
quality solutions (Sousa et al. [16]). For the three cases presented, the four SA 
parameters (α: sets the initial acceptance rate for candidate solutions with value 
10% smaller than the value of the incumbent solution, λ: sets the minimum 
number of candidate solutions that must be evaluated at each temperature, γ: sets 
the rate at which the temperature decreases,  and σ: sets the maximum number of 
temperature decreases that may occur without an improvement of the best or the 
average solution value) were calibrated by the authors in previous work 
(Zeferino et al [22]). They are, for case a): α = 0.599, λ = 49, γ = 0.500 and σ = 
13; case b): α = 0.497, λ = 56, γ = 0.575 and σ = 12; case c): α = 0.308, λ = 52, γ 
= 0.696 and σ = 12. As SA is a random search algorithm, 10 different seeds were 
used for the pseudo-random generator for each of the three cases. The results 
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obtained are given in Table 1, with Ci and Ce in M€ and DO in mg/l. The results 
for minimum Ci (Cimin), minimum Ce (Cemin) and maximum DO (DOmax) are 
obtained from each line of each case matrix. Note that all of these values match 
the diagonal of the matrix. This was expected, since the diagonal corresponds to 
the values achieved respectively in the minimization and maximization 
processes. The results for maximum Ci (Cimax), maximum Ce (Cemax) and 
minimum DO (DOmin) are obtained in the same way, and are given by the 
corresponding maximum or minimum values of each line. The process of 
defining the proper distribution of weights is not an objective of this work. As 
mentioned before, different combinations of weights were selected for this study. 
Once the results for these combinations are obtained, a small set of Pareto 
solutions is achieved, in order to relate the trade-off between the different 
criteria. The set of Pareto-optimal solutions makes it possible to see how the 
solutions change when given different weights. For this study 4 combinations of 
weights were chosen (Table 2). 

Table 1:  Results for the extremes. 

a) min Ci min Ce max DO

Ci 23,23 24,60 37,63

Ce 0,75 0,73 1,03

OD 6,088 6,108 6,175

b) min Ci min Ce max DO

Ci 29,25 31,57 55,01

Ce 1,20 1,13 1,91

OD 5,800 5,849 5,939

c) min Ci min Ce max DO

Ci 37,16 37,81 56,85

Ce 1,61 1,55 2,00

OD 5,861 5,860 5,923

a) min Ci min Ce max DO

Ci 23,23 24,60 37,63

Ce 0,75 0,73 1,03

OD 6,088 6,108 6,175

b) min Ci min Ce max DO

Ci 29,25 31,57 55,01

Ce 1,20 1,13 1,91

OD 5,800 5,849 5,939

c) min Ci min Ce max DO

Ci 37,16 37,81 56,85

Ce 1,61 1,55 2,00

OD 5,861 5,860 5,923  
 

Table 2:  Combinations of weights used. 

 

WCi WCe WDO

Combination 1 0,33(3) 0,33(3) 0,33(3)

Combination 2 0,60 0,20 0,20

Combination 3 0,20 0,60 0,20

Combination 4 0,20 0,20 0,60  
 
     The solutions generated can also be used to give a set of alternatives that 
would help with a complementary decision-making aid. This can be done using 
another multicriteria optimization, based on the selection of a solution from a 
limited number of alternatives (Vincke [19]). This posterior analysis is not 
within the scope of this study. 

5 Multiobjective results  

Once the extremes of each indicator were determined and the different 
combinations for the weights established, the multiobjective model was solved. 
This was done for the three cases presented, using 10 different seeds. The 
parameters used in each case were the same as those employed before in the 
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evaluation of the extreme values. The results for each case are presented in 
Table 3.  The tables on the left correspond to the three cases studied. Each 
contains the best values of the criteria for each combination. The tables on the 
right present the results for the respective standardized indicators (Ĉi, Ĉe and 
DÔ), where 0% corresponds to the best value of the criteria and 100% to the 
worst value of the criteria. The extreme values (0% and 100%) were obtained 
earlier in this work. The summation of these values multiplied by the weight of 
the respective combination gives the value of the function F that was minimized. 

Table 3:  Payoff results of the multiple objective problem. Left: Values of 
the criteria for the three cases; Right: Standardized criteria and 
F values. 

a) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ĉi 19,8% 3,0% 3,9% 25,4%

Ĉe 14,5% 3,6% 2,0% 19,6%

DÔ 6,60% 57,49% 57,49% 1,23%

F 0,136 0,140 0,134 0,098

b) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ĉi 15,6% 15,5% 15,7% 22,1%

Ĉe 7,3% 7,4% 7,2% 10,7%

DÔ 10,29% 10,29% 10,29% 0,61%

F 0,111 0,128 0,095 0,069

c) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ĉi 14,7% 14,7% 16,5% 16,9%

Ĉe 5,8% 5,8% 5,0% 8,8%

DÔ 2,70% 2,70% 2,70% 0,47%

F 0,077 0,105 0,068 0,054

c) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ci 40,052 40,052 40,402 40,482

Ce 1,576 1,576 1,573 1,590

DO 5,9210 5,9210 5,9210 5,9224

b) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ci 33,265 33,236 33,290 34,956

Ce 1,185 1,186 1,184 1,211

DO 5,9249 5,9249 5,9249 5,9384

a) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ci 26,078 23,670 23,790 26,896

Ce 0,777 0,744 0,739 0,792

DO 6,1697 6,1250 6,1250 6,1744

a) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ĉi 19,8% 3,0% 3,9% 25,4%

Ĉe 14,5% 3,6% 2,0% 19,6%

DÔ 6,60% 57,49% 57,49% 1,23%

F 0,136 0,140 0,134 0,098

b) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ĉi 15,6% 15,5% 15,7% 22,1%

Ĉe 7,3% 7,4% 7,2% 10,7%

DÔ 10,29% 10,29% 10,29% 0,61%

F 0,111 0,128 0,095 0,069

c) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ĉi 14,7% 14,7% 16,5% 16,9%

Ĉe 5,8% 5,8% 5,0% 8,8%

DÔ 2,70% 2,70% 2,70% 0,47%

F 0,077 0,105 0,068 0,054

c) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ci 40,052 40,052 40,402 40,482

Ce 1,576 1,576 1,573 1,590

DO 5,9210 5,9210 5,9210 5,9224

b) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ci 33,265 33,236 33,290 34,956

Ce 1,185 1,186 1,184 1,211

DO 5,9249 5,9249 5,9249 5,9384

a) Comb. 1 Comb. 2 Comb. 3 Comb. 4

Ci 26,078 23,670 23,790 26,896

Ce 0,777 0,744 0,739 0,792

DO 6,1697 6,1250 6,1250 6,1744

 
 

     The analysis of the results in each case shows that, once again as expected, 
the minimum value of the normalized indicators appears in the combination that 
sets highest weight for the respective indicator. 
     In relation to the trade-offs between the criteria, the first two indicators, Ci 
and Ce, seem to be clearly incommensurable with DO. For all the cases studied, 
the best value of DO results in the worst solution for the other indicators. 
Relating to the indicators Ci and Ce, the only observation is that it was not 
possible to find a solution where both were minimized at the same time. Despite 
the trade-off between these indicators being only slight, this probably means that 
they are also incommensurable. Regarding the results for F, the minimum value 
obtained was always in combination 4, that is, when more weight is given to the 
DO. This indicates that it is easier to find solutions where the maximization of 
the DO is near the optimum, thus having suitable values for the other indicators 
at the same time. 
     The analysis of how the solutions physically change according to the different 
combinations of weights is also possible. Figure 2 gives some results of case b), 
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showing the changes that occur in the solutions along with the increase of WDO. 
The analysis of the three images in Figure 2 clearly shows how the solutions 
adapt as more weight is given to one criteria, in this case, the maximization of 
DO. In the top left figure, the WDO is only 33.3(3)%, that is, the same as that 
given to Ci and Ce. In the top right figure, corresponding to a WDO = 60%, the 
solution changes through setting one water treatment plant in the first node, in 
order to improve the DO in the river. However, since WCi = 20% and WCe = 20%, 
the solution still considers some aspects for minimizing costs. The figure at the 
bottom shows a solution where there is no concern with the cost, since it 
corresponds to the maximization of DO. This is equivalent to having a 
WDO = 100%. As can be seen, the solution is quite unusual, given that it only 
concerns the wastewater flow that is discharged in each water treatment plant. 
 

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

River

Sewer

River

Population center

Population center with
pump station

Contour line

Treatment plant (large)

Pump station

Treatment plant (small)

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

50

100

150

200

250

300300350400450

450

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

50

100

150

200

250

300300350400450

450

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

River

50

100

150

200

250

300300350400450

450

50

100

150

200

250

300300350400450

450

50

100

150

200

250

300300350400450

450

River

Sewer

River

Population center

Population center with
pump station

Contour line

Treatment plant (large)

Pump station

Treatment plant (small)

Sewer

River

Population center

Population center with
pump station

Contour line

Treatment plant (large)

Pump station

Treatment plant (small)  

Figure 2: Top left: combination 1; top right: combination 4; bottom: DO 
maximization. 

6 Conclusions  

A multiobjective approach has been presented for the siting and sizing of the 
components of a regional wastewater system. A weighted summation method has 
been applied to find efficient solutions. The results obtained for three different 
case studies made it possible to analyse the solutions according to the importance 
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given to each criterion. A set of alternatives was also generated, which helps to 
support decision-making. 
     In future work, this multiobjective approach might seek to find a large set of 
Pareto solutions, showing the best trade-offs between the criteria. More criteria 
can also be used, to give broader coverage of the objectives involved in regional 
wastewater system planning.  
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