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Abstract

Stochastic differential equations (SDEs) are stochastic in nature. The SDEs under
consideration are often called particle models (PMs). PMs in this article model
the simulation of transport of pollutants in shallow waters. The main focus is
the derivation and efficient implementation of an adaptive scheme for numerical
integration of the SDEs in this article. The error determination at each integration
time step near the boundary where the diffusion is dominant is done by a pair of
numerical schemes with strong order 1 of convergence and that of strong order 1.5.
When the deterministic is dominant we use the aforementioned order 1 scheme and
another scheme of strong order 2. An optimal stepsize for a given error tolerance
is estimated. Moreover, the algorithm is developed in such a way that it allows
for a completely flexible change of the time stepsize while guaranteeing correct
Brownian paths. The software implementation uses the MPI library and allows
for parallel processing. By making use of internal synchronisation points it allows
for snapshots and particle counts to be made at given times, despite the inherent
asynchronicity of the particles with regard to time.
Keywords: adaptive schemes, Wiener processes, SDEs, particle model, variable
stepsize, parallel computing, speed up.
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1 Introduction to PMs in shallow water transport problems

Coastal ecosystems may experience environmental threats due to for example
oil spills that may come from tanker accidents, or toxic chemical from the
establishment of industries along the coastal areas. These processes require a
contingency management of the transport materials in shallow waters. Numerical
simulation of SDEs is widely applied in modern scientific investigations (Kloeden
et al [1]). However, accurate solutions are not always guaranteed, thus there is a
constant need to improve the numerical approaches in the mathematical models.

Fixed stepsize implementations of numerical methods in traditional particle
models have limitations. Moreover, the use of fixed small stepsizes in the
numerical approximation of SDEs may become unnecessary in case the error is
very small and large time steps suffice. In the simulation of pollutant transport
in shallow waters using SDEs, smaller stepsizes are needed to stably integrate
in highly irregular areas and vice versa. In such situations, it is advantageous to
employ an adaptive scheme in the particle model. Gaines et al [2] and Burrage
et al [3] introduced a variable timestepping procedure for the pathwise (strong)
numerical integration of a system of SDEs.

The concept of adaptive schemes by mesh refining in Eulerian methods have
been used in ([4]). Particle models do not suffer from numerical diffusion in
the source points (Heemink [5], Barber et al [6]). However, even when using an
adaptive scheme, the computational cost may become high due to small stepsizes
or the large number of particles (Kloeden et al [1]). Fortunately particles are
independent from one another, thus allow efficient use of parallel processing.

In this article we implement parallel program to speed up the computation. This
article is organised as follows. The governing set of SDEs and their schemes are
discussed in section 2. The procedure of determining the variable stepsizes is
described in section 2.4. The adaptive parallel time stepping implementation is
described in sections 3. The results appear in section 3.2. The concluding remarks
are given in Section 4.

2 Adaptive strong approximation of SDE in modeling of
pollution transport in shallow Waters

The displacement of pollutants in shallow waters is described by:

dXt
Itô=
[
U + DXX (x,y)

H (∂H
∂x ) + ∂DXX (x,y)

∂x

]
dt +

√
2DXX(x, y)dW x

n

dYt
Itô=
[
V + DY Y (x,y)

H (∂H
∂y ) + ∂DY Y (x,y)

∂y

]
dt +

√
2DY Y (x, y)dW y

n

(1)

(Xt, Yt) is the position of a particle, (U, V )T is flow velocities and H is the total
water depth. Wiener processes W x

n (t) and W y
n (t) are Gaussian (Kloeden et al [1]),

DXX(x, y) and DY Y (x, y) are the horizontal dispersion coefficient functions in
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the x and y direction respectively.

DXX(x, y) =
D11

1 + e−(((x−xb)2+(y−yb)2)−K2)
×{

1 +
(
[1 + eK2

] cos(α) − 1
)

e−((x−xb)
2+(y−yb)

2)
}

(2)

DY Y (x, y) =
D22

1 + e−(((x−xb)2+(y−yb)2)−K2)
×{

1 +
(
[1 + eK2

] sin(α) − 1
)

e−((x−xb)
2+(y−yb)

2)
}

. (3)

where D1,1 and D2,2 are the horizontal dispersion parameters.

eT
1 c = ‖e1‖‖c‖ cos(α), sin(α) =

|c2|√
c2
1 + c2

2

,

with ek the kth column from the identity matrix, c = (c1, c2)T. Finally, α is the
assumed to be the angle between the boundary and x or y direction. Where c is a
direction vector a long the side of a given boundary cell, (xb, yb) is intersection
point on the boundary between the line from (x, y) perpendicular to the boundary.
K ≥ 0 is a parameter modeling the decrease of diffusion coefficient near the
boundary.

In numerical methods, there are two ways of measuring accuracy, namely strong
convergence and weak convergence (Kloeden et al [1]). In this paper we make use
of the strong convergence in determining the error at each step.

Definition 1 Strong order of Convergence
Let X̄N be the numerical approximation of X(T ) after N steps. Under suitable
conditions of the SDEs, for a fixed time T , the strong order of convergence is β1

if there exist a positive constant K independent of ∆t where T = N∆t, so the
global order is defined:

E{∣∣X̄N − X(T )
∣∣} ≤ K(∆t)β1 , E{∣∣ȲN − Y (T )

∣∣} ≤ K(∆t)β1 ,

In this article we use pairs of schemes having different orders of convergence, in
this way an error can be cheaply estimated at each step. Integration of the stochastic
integral can be done using either the Itô or Stratonovich rule (Kloeden et al [1]).
In this article, the Stratonovich rule is used in section 2.3, otherwise we use the Itô
rule.
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2.1 A scheme with strong order 1

Here we only give a brief overview of schemes, an interested reader is referred to
Kloeden et al [1]. Consider the following scheme:

Xn+1
Itô= Xn +

[
U +

DXX(Xn, Yn)
H

∂H

∂x
+

∂DXX(Xn, Yn)
∂x

]
∆tn

+
∆(W x

n )2 − ∆tn

2
√

∆tn

[√
2DXX(X∗+1

n+1, Y
∗+1
n+1 ) −

√
2DXX(Xn, Yn)

]

+
√

2DXX(Xn, Yn)∆W x
n . (4)

The expression for Yn+1 is similar to the above equation, with the first r.h.s. term
Xn replaced by Yn, all DXX(·, ·) terms by DY Y (·, ·), the superscripts x modified
to y. Where ∆W x

n = W x(tn+1)−W x(tn) is an independent increment of Wiener
processes in the time interval [tn, tn+1]. n = 0, 1, · · · .

X∗+1
n+1 = Xn + a1(Xn, Yn)∆tn +

√
2DXX(Xn, Yn)∆tn.

Similarly for Y ∗+1
n+1 along y direction. A drift function a1 is given below:

a1(Xn, Yn) =
[
U +

DXX(Xn, Yn)
H

(
∂H

∂x

)
+

∂DXX(Xn, Yn)
∂x

]
, (5)

likewise for a2 along y direction.

2.2 A scheme with strong order 1.5

The following scheme (Kloeden et al [1]), is implemented in this article.

Xn+1
Itô
= Xn +

{
a1+

n (X∗+z
n+1, Y ∗+z

n+1 ) − a1−
n (X∗−z

n+1 , Y ∗−z
n+1 )

}
× ∆tn

4

(
Rx

n,1 +
1√
3

Rx
n,2

)

+
∆tn

4

{
a1+

n (X∗+z
n+1, Y ∗+z

n+1 ) + a1−
n (X∗−z

n+1, Y ∗−z
n+1 )

}
+
√

2DXX(Xn, Yn)∆W x
n

+
1

4
√

∆t

{√
2DXX(X∗+z

n+1, Y ∗+z
n+1 ) −

√
2DXX(X∗−z

n+1, Y ∗−z
n+1 )

}
(∆W x

n )2 − ∆tn

+

{√
2DXX(X∗+z

n+1, Y ∗+z
n+1 ) − 2

√
2DXX(Xn, Yn) +

√
2DXX(X∗−z

n+1, Y ∗−z
n+1 )

}
×

{
∆W x

n − 1

2

(
Rx

n,1 +
1√
3

Rx
n,2

)√
∆tn

}

+

[√
2DXX(X∗+φ

n+1 , Y ∗+φ
n+1 ) −

√
2DXX(X∗−φ

n+1 , Y ∗−φ
n+1 )−

√
2DXX(X∗+z

n+1, Y ∗+z
n+1 )

+
√

2DXX(X∗−z
n+1, Y ∗−z

n+1 )

]
× 1

4∆t

{
1

3
(∆W x

n )2 − ∆tn

}
∆W x

n .
(6)

The expression for Yn+1 is similar to the above equation, with the first r.h.s. term
Xn replaced by Yn, all DXX(·, ·) terms by DY Y (·, ·), the superscripts x modified
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to y for W and R, and similarly the 1+ and 1− superscripts for a to 2+ and 2−.
Using the shorthand notation of ⊕ for either + or −, the following supporting
vectors (used in equation 6) are defined

X∗⊕z
n+1 = Xn +

1
2
a1

n(Xn, Yn)∆tn ⊕
√

2DXX(Xn, Yn)∆tn

X∗⊕φ
n+1 = X∗⊕z

n+1 ⊕
√

2DXX(X∗+z
n+1, Y

∗+z
n+1 )∆tn.

The expressions for Y ∗+z
n+1 , Y ∗−z

n+1 , Y ∗+φ
n+1 , and Y ∗−φ

n+1 are again similar, with the
X in the first r.h.s. term replaced to Y , a1

n replaced by a2
n and DXX by DY Y .

consequently, using equations (5), we get

a1+
(
X∗+z

n+1, Y
∗+z
n+1

)
=
[
U +

DXX (X∗+z
n+1,Y ∗+z

n+1 )

H
∂H
∂x +

∂DXX (X∗+z
n+1,Y ∗+z

n+1 )

∂x

]

a1− (X∗−z
n+1, Y

∗−z
n+1

)
=
[
U +

DXX (X∗−z
n+1,Y ∗−z

n+1 )

H
∂H
∂x +

∂DXX (X∗−z
n+1,Y ∗−z

n+1 )

∂x

]

likewise for a2+
(
X∗+z

n+1, Y
∗+z
n+1

)
and a2− (X∗−z

n+1, Y
∗−z
n+1

)
. DXX(·, ·), DY Y (·, ·)

approach zero toward the boundary and remain constant away from the boundary.
Thus we are confronted with the situation where the drift becomes deterministic.
The error criterion in this case holds for a pair of schemes of order 1 and higher
strong order 2 of convergence, for example.

2.3 A scheme with strong order 2

Next we consider according to Kloeden et al [1], the following scheme:

Xn+1
Strat= Xn +

1
2
{
a1
(
X+

n+1, Y
+
n+1

)
+ a1

(
X−

n+1, Y
−
n+1

)}
∆tn

+
1

∆tn

{√
2DXX(tn + 1) −

√
2DXX(tn)

}
{∆W x

n ∆tn − ∆Mx
n}

+
√

2DXX(Xn, Yn)∆W x
n (7)

Yn+1
Strat= Yn +

1
2
{
a2
(
X+

n+1, Y
+
n+1

)
+ a2

(
X−

n+1, Y
−
n+1

)}
∆tn

+
1

∆tn

{√
2DY Y (tn + 1) −

√
2DY Y (tn)

}
× {∆W y

n∆tn − ∆My
n}

+
√

2DY Y (Xn, Yn)∆W y
n . (8)
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Here DXX(t) = D11 and DY Y (t) = D22 are constants, so that the second line
of the above two equations reduces to zero. The supporting vectors are defined by

X⊕
n+1 = Xn +

1
2
a1(Xn, Yn)∆tn

+
1

∆tn

√
2DXX(Xn, Yn)

{
∆Mx

n ⊕
√

2Jx,p
(1,1,0)∆tn − (∆Mx

n )2
}

(9)

Y ⊕
n+1 = Yn +

1
2
a2(Xn, Yn)∆tn

+
1

∆tn

√
2DY Y (Xn, Yn)

{
∆My

n ⊕
√

2Jy,p
(1,1,0)∆tn − (∆My

n)2
}

,

(10)

where ⊕ the plus or minus operator. The definition of a1(X, Y ) is obtained by
using Itô-Stratonovich transformation (see Kloeden et al [1]) of Eqn (5), yielding

a1(X, Y ) =
[
U +

DXX(X, Y )
H

(
∂H

∂x

)
+

1
2

∂DXX(X, Y )
∂x

]
.

likewise for a2(X, Y ) along y direction. Higher order schemes such as that of
order 2, require the approximation of multiple higher Stratonovich stochastic
integrals (Jp

(1,1,0), see equation 11).
However, these cannot always be expressed in terms of simpler stochastic

integrals, especially when the Wiener process is multi-dimensional. Using a
method for multiple Stratonovich based on Kahunen-Loève or random Fourier
series expansion of the Wiener process (for details, see Kloeden et al [1]) we
can nevertheless approximate the integrals. This introduces a Brownian bridge
into our model, a process fully described in Kloeden et al [1]. The Brownian
bridge is a restricted Wiener process (hence also referred to as the “tied down”
Wiener process) that passes through known points at t = 0 and t = T and is given
by
{
Wt − t

T WT , 0 ≤ t ≤ T
}

. This can be done by generating an unconstrained
(standard) Wiener process which is then linearly scaled in order to meet the
required end points.

Following Karhunen-Loève (see [1]) we define the random variables ax
r and bx

r

by

ax
r =

2
∆t

∫ ∆t

0

(
W x

s − s

∆t
W x

∆t

)
cos
(

2rπs

∆t

)
ds

and bx
r =

2
∆t

∫ ∆t

0

(
W x

s − s

∆t
W x

∆t

)
sin
(

2rπs

∆t

)
ds, r = 1, 2, . . .

and likewise ay
r and by

r , obtained by replacing the x superscripts by y. (In the
remainder of this section we will silently assume this convention, unless otherwise
specified.) It is known that, for r ≥ 1 these variables have an N [

0, ∆t
2π2r2

]
distribution. They are differentiable samples paths on the interval [0, T ].

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2006 WIT PressWIT Transactions on Ecology and the Environment, Vol 95,

470  Water Pollution VIII: Modelling, Monitoring and Management



Let ζx
r , ξx, ζy

r , ξy, ηx
r , ηy

r , φx
p , and φx

p denote independent random variables
(Kloeden et al [1]), for r = 1, 2, . . . and p = 1, 2, . . .:

ξx = 1√
∆t

W x
∆t ζx

r =
√

2
∆tπrax

r ηx
r =

√
2

∆tπrbx
r

µx
p = 1√

∆tρp

∑∞
r=p+1 ax

r φx
p = 1√

∆tβp

∑∞
r=p+1

1
r bx

r

µy
p = 1√

∆tρp

∑∞
r=p+1 ay

r φy
p = 1√

∆tβp

∑∞
r=p+1

1
r by

r .

Variance of µ̂x
p =

√
∆tρpµ

x
p can be computed by noting that the variance of ax

r

is given by var[ax
r ] = ∆t/2π2r2 (see Kloeden et al [1]) and with the fact that∑∞

r=1 1/r2 = π2/6 and
∑∞

r=1 1/r4 = π4/90.

ax
0 = − 1

π

√
2∆t

p∑
r=1

1
r
ζx
r − 2

√
∆t · ρpµ

x
p , ρp =

1
12

− 1
2π2

p∑
r=1

1
r2

using the definition of ax
r , ay

r , and for each component and r = 1, . . . , p with
p = 1, 2, . . ., where p is the truncation index in the approximation of multiple
integrals. We then define

Bx =

√
∆t

2

p∑
r=1

1
r2

ηx
r +

√
∆tβpφ

x
p , βp =

π2

180
− 1

2π2

p∑
r=1

1
r4

Furthermore, we have

∆Mx
n = 1

2
∆t
[√

∆tξx + ax
0

]
Cp

x,x = − 1
2π2

∑p
r,l=1r �=l

r
r2−l2

{
1
l
ζx
r ζx

l − l
r
ηx

r ηx
l

}

and similar for ∆My
n and Cp

y,y and with superscripts changed from x to y.
Using these random variables it turns out after lengthy computations that we can
approximate a multiple integral as follows

Jx,p
(1,1,0) = 1

6 (∆t)2(ξx)2 + 1
4∆t(ax

0)2 − 1
2π (∆t)

3
2 ξxBx

+ 1
4 (∆t)

3
2 ax

0ξx − (∆t)2Cp
x,x.

(11)

Jx,p
(1,1,0) is an approximation of Jx

(1,1,0) and it is known [1] that Jx
(1,1,0) ≥

(∆Mx)2

2∆tn
always. If it turns out Jx,p

(1,1,0) < (∆Mx)2

2∆tn
, we take ∆Mx as the better

approximation for J(1,1,0). Similarly for Jy,p
(1,1,0) and finally Eqns (7)-(8).

2.4 Determination of variable time stepsizes

Let (X̂n+1, Ŷn+1) be the numerical result obtained from the approximations of
an SDE (1) using scheme (4) again we apply scheme (6) on the same particle
near the boundary But when the drift term is dominant i.e., away from the
boundary, we use Eqns (4) and scheme (7)- (8) where (Xrefn+1

, Yrefn+1
) is due to

a reference a higher scheme. (Xrefn+1
, Yrefn+1

) is used to advance the numerical
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computation in the next time step, while (X̂n+1, Ŷn+1) and (Xrefn+1
, Yrefn+1

) is
used to estimate absolute error ([3]). Let toli be the tolerance accepted for the ith
components then an error estimate of order q + 1

2 in two-dimensional adaptive
particle model:

error =

√√√√1
2

(∣∣∣∣∣
Xrefn+1,1

− X̂1n+1,1

tol1

∣∣∣∣∣+
∣∣∣∣∣
Yrefn+1,2

− Ŷ1n+1,2

tol2

∣∣∣∣∣
)

, (12)

where q is considered to be either ô or o. Burrage et al [3] interpreted the calculated
error as an approximation to the error in the higher order method unlike in the
deterministic construction of ODEs. It is desirable that Xrefn+1,1

− X̂n+1,1 ≈ tol1

and Yrefn+1,2
− Ŷn+1,2 ≈ tol2, the step just completed is rejected if error > 1

otherwise compute an optimal stepsize (∆t)opt = ∆told

(
1

error

) 1
2 until the

desired accuracy is attained. For efficient implementation using a variable stepsize
strategy, an optimal stepsize can be decreased by a safety factor for example 0.8 to
avoid oscillatory behaviour in the stepsize so that it does not increase or decrease
too quickly [3]:

(∆t)new = ∆told ∗ min

(
facmx, max

(
facmn, fac ∗

(
1

error

) 1
2
))

(13)

where facmx and facmn are the maximal and minimal stepsize scaling factors
allowed, respectively for the problems being solved (Burrage et al [3]). Variable
stepsize implementation has a possibility of stepsize acceleration using Eqn. (13).
This arises when a step fails, possibly due to extreme random sample, in this
article, we avoid uncontrolled jumps in the step size such that the final step length
is given by

∆tn = max ((∆t)new , 0.9 ∗ ∆tn−1) .

3 Implementation of time stepping adaptive parallel processing
for SDEs

The implementation of adaptive scheme differs substantially from one with a fixed
step size in that is it no longer possible to have a single major loop governing the
time by taking a single step of fixed size (Lin et al [7]). Instead, the current time
differs between the particles and, in addition to the coordinates, each particle now
needs a local time associated with. This concept of local time introduces a wide
level of asynchronicity into the model, making it hard to define a major loop in the
traditional way. Additionally, this lack of synchronous time complicates taking a
snapshot of the particle locations at a given time.

To overcome these difficulties we introduce an event mechanism which
defines certain synchronisation points in the otherwise chaotic time line. The
implementation consists of a number of different modules, each taking care of
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a certain function within the program. Each module provides the central engine
with a list of desired events consisting of the time(s) at which they should occur,
a type and possible some additional data. It then invokes the integration module
with the present time and the time to integrate to. The integration routine will then
perform the integration and is completely free to decide how this time interval
is integrated. It will ensure however that each particle is exactly integrated up to
the desired ending time, coinciding with the event, unless of course the particle
flows out of the domain before that. This way, the result of the integration call is
a set of particles, with their location at exactly the time of the event. The main
program itself also generates an event telling the main loop to stop at the desired
time. The particle model lends itself extremely well for parallel processing, since
the particles do not interact with one another and can therefore be considered on
an individual basis. By dividing the particles, instead of the domain, across the
processors we take full advantage of the independency.

3.1 Parallel processing experiments

Experiments of prediction of the dispersion of pollutants are carried out on a
distributed memory parallel architecture called DAS-2 [8]. It is a 200-node system
with a total of 400 -processors wide-area distributed system. Speed up is the ratio
of the time taken to solve a problem on a single processor to the time required to
solve the same problem on a parallel computer with p processors: S(p) = T1

Tp
, for

speed up result see Fig.1(d).

3.1.1 Summary of the simulation parameters
Grid size 105× 105, tol1 = tol2 = 12, minimum ∆t=0.0001s, initial ∆t = 0.1s,
p = 10, D11 = D22 = 10m2/s, initial point (−20000m,−1800m), ∆x =
∆y = 400m, H(x, y) = 10m , fac = 0.8, facmin = 0.6 , facmax = 1.1,
K = 1m. Radius =3, is the number of grid rings surrounding the threshold point.
Threshold distance= 1000m is the point where the two schemes of order 1.5 and
order 2 exchange, Brownian bridge steps= 30.

3.2 Results

The following results Fig. 1 (a)-(c) carried out by one processor using a domain
composed of the river,the lake and two islands as well as outflows. 2000 particles
were initially released at the point (−20000m,−1800m).

4 Concluding remarks

In this paper an adaptive scheme for the parallel simulation of pollutant transport
in shallow waters using SDEs has been implemented. We have seen that smaller
stepsizes are needed to stably integrate in highly irregular areas and vice versa, see
Fig. 1(b). Thus, it is advantageous to employ an adaptive scheme in the particle
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(a) Flow field (b) Variation of dt along a track

(c) Snap shot taken after 5 minutes (d) Speedup

Figure 1: Simulation results (a) flow fields, (b) variations of stepsize at different
locations, (c) snapshot of particles’ position at every 5 minutes, (d) speed
up measured on a Beowulf cluster.

model. Good speed up is attained as well. As a consequence, at least at the moment
there is no need to carefully divide the domain into several sub-regions. But more
analysis will be carried out.
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