
Dynamic vehicle routing in road evacuation:    
a model for route design  

A. Polimeni & A. Vitetta 
Università degli Studi Mediterranea di Reggio Calabria, 
DIMET - Dipartimento di Informatica, Matematica, Elettronica  
e Trasporti, Italy 

Abstract 

In this paper the shortest path and route problem in time-dependent networks are 
treated. The system can be in ordinary or emergency conditions. Path design 
formulation is based on dynamic programming and its solution is found through 
a modification of Dijkstra’s algorithm. Route design, starting from the designed 
paths, is formulated as an optimum problem. In emergency conditions the main 
objective is to optimize emergency vehicle tour to reduce the intervention time or 
maximize the number of people rescued in a fixed time.  
Keywords: time-dependent networks, path design, emergency conditions. 

1 Introduction 

Models and procedures to find shortest paths in a road network in real time are 
essential to provide information to system users. In this paper we propose models 
and procedures for path design, and accordingly for vehicle route design, for a 
fleet of emergency vehicles that operate to support the population involved in a 
disaster. When a disaster occurs, the road network changes from ordinary 
conditions to emergency conditions (i.e. due to the closure of some links, to the 
change in link costs, and so on). For a road network under emergency conditions, 
models and procedures used for networks under ordinary conditions cannot be 
directly applied [1]. In emergency conditions many of the models and procedures 
used in ordinary conditions need to be redefined. The modifications to be 
considered concern demand [2–6], supply and demand-supply interaction [7, 8], 
path design for emergency vehicles [9, 10] and the general guidelines for 
planning [11–15]. 
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     A path is a link sequence, without loops, that connects an initial node (origin) 
to a final node (destination). A vehicle route is a path sequence which a vehicle 
uses to reach some points (nodes) in a road network. Hence path design consists 
in optimizing the link sequence; the route design consists in optimizing the path 
sequence in a route, termed path succession.  
     Path design [9] consists in the solution of a One-to-One Problem (OOP), and 
route design in solving a Many-to-One Problem (MOP) (known as Vehicle 
Routing Problem, VRP). 
     The models and methods found in the literature appear unable to tackle the 
OOP and the VRP in emergency conditions, due to the major changes arising in 
supply and demand when an emergency occurs. Such changes affect the path 
choice dimension, hence that of vehicle routing, since a vehicle route is the result 
of a combination of different paths in which travel time rapidly changes. 
     From the above considerations there emerged the need to integrate the design 
models in the literature with considerations made for a network in emergency 
conditions, in order to allow for the effects of variation in supply and demand in 
path and vehicle routing definitions. Moreover, the evolution of network costs 
also needs to be taken into account so as to be able to update path topology and 
routes in time. In a time-dependent network, a path is termed time-dependent 
when at least one link has a cost function dependent on time. Similarly, a time-
dependent route is a route in which at least one path is time-dependent. 
     The main research advances presented in this paper concern the design 
models, which are able to optimize paths and routes for emergency vehicles, 
taking into account time-dependence and optimizing the wait times at the nodes. 
     The paper is structured as follows. In section 2 a literature review concerning 
the shortest paths search in time-dependent networks is presented. Section 3 
reports the approach to find the best paths and routes. Finally, in section 4, are 
the conclusions and possible future developments.  

2 Literature review 

In this section, the literature related to the OOP and VRP is examined. Previous 
emphasis has been on path and route design for networks in ordinary conditions, 
and path search is based on Bellman’s optimality condition [16]. The shortest 
path problem can be solved using a dynamic programming approach [16, 17]. 
     Static networks (that is when the link cost is invariable in time) have been 
widely covered literature; for an extensive literature review, see [9, 18]. For 
time-dependent networks, one of the first path search studies was made by 
Cooke and Halsey [19], in which the travel time between two nodes depends on 
departure time from the first node. Next, Dreyfus [20] evaluated some algorithms 
for the shortest path search, especially the case in which the link costs (link 
lengths) are time-dependent. In the literature, the problem is generally defined as 
being how to find the paths from one node to all the others or vice versa. Under 
certain assumptions [21], the two problems are symmetric and can be solved in 
an equivalent manner. Another consideration may be made on the type of 
approach, deterministic ([22–24] to name a few) or stochastic (for example [25–
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28]). In the former, the costs are variable in time and for each time value we have 
a single cost value; in the latter the costs are random variables with a probability 
distribution function and for each time value may have some cost value with a 
certain probability. In some papers [29, 30], path search is analysed with the 
possibility of waiting at intermediate nodes. 
      There are also other cases [31] in which the waiting time at intermediate 
nodes to reduce the cost of the path is added. In this case the link cost functions 
are continuous and the proposed algorithm is a modification of Dijkstra’s 
algorithm. Note that the path topology is fixed and cannot be changed by 
inserting the waiting time at the nodes. 
     Much has been written about the VRP with static costs in ordinary conditions. 
For an extensive literature review related to VRP see [32]. The VRP in 
emergency conditions is discussed in [9, 33]. Some papers discuss the case of 
vehicle routing with time-dependent costs in a network in ordinary conditions 
[34, 35]. 

3 Proposed approach 

3.1 Notation 

Let: 
i, j be the initial and final node of the link (i, j); 
v, a vehicle; 
Ai,v, the instant of arrival at node i by vehicle v; 
ij(t), the cost function for the link (i,j) (the function defines the ij travel link cost 
for vehicle v which arrives at node i in instant t); 
i(t), the waiting function at node i; 
ij(t) = ij(t) + i(t); 
A*

i,v, the instant when ij(t) is minimum with t ≥ Ai,v; 
w*

i,j,v = A*
i,v - Ai,v  

Below, w*
i,j,v stands for optimum Waiting time at node i to reach j. 

3.2 Cost functions analysis 

In a network under emergency conditions two vehicle classes can be 
distinguished: private user vehicles and emergency vehicles. When a vehicle 
moves on the network it incurs a cost which depends on time according to some 
functions. Generally, emergency vehicles have priority but, if the vehicles are 
moving in a mixed lane, they may be constrained by the time of private user 
vehicles. In such conditions, it can be assumed that the time-dependent cost 
functions for emergency vehicles are the same as those considered for private 
vehicles. Hence, function ij(t) is defined by the travel time of private vehicles; 
the emergency vehicles do not modify this travel time because they are far fewer 
in number than private vehicles. This assumption allows us to guide emergency 
vehicles along a best path.  
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     The path cost is the sum of the link cost, for the link belonging to the path, 
and node wait, when waiting is allowed. The following analysis reported in this 
section is made by setting the instant of arrival at node i by vehicle v (Ai,v is 
fixed) and analysing the system at time t ≥ Ai,v. This analysis is general because 
on changing time or node the problem is recursive. 
     To simplify the notation, this section will not consider the subscripts of the 
variables related to the nodes and vehicles, and the following notation is used: 
A, the instant of arrival at node i by vehicle v; 
A*, the instant when (t) is minimum; 
w*, the optimum waiting time; 
(t), the cost function for the link;  
(t), waiting function at the node; 

(t) = (t) + (t). 
     For the link cost some types of continuous cost function (t) are utilized. For 
the waiting time function a linear function is assumed with unitary slope (other 
functions could be used):  

(t) = t – A      with t ≥ A. 
     In the cases where the link cost function is decreasing, waiting at the node 
could allow a cost reduction. Conversely, an increasing function may not lead to 
a cost reduction if it optimizes the wait at the initial node. To optimize the cost 
(t) it is necessary to optimize the waiting time w* at the nodes.  
     Simple geometrical considerations allow us to identify the range where w* 
could fall. In figure 1 the case of a general link cost function is examined. In 
figure 1 the cost function (t) is indicated by a broken line, the auxiliary function 
(t) by a solid line. A dotted line is used for the waiting function (t), starting 
from the arrival time A. 

 
 

Figure 1: Arrival time and optimum waiting time in a general case. 
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     Given an arrival time A, the cost is (A) (that is equal to (A)). It represents 
an upper bound for the link cost (the link cost will be less than or equal to the 
upper bound value). This value may not be unique: on drawing a horizontal line 
from point (A, (A)) it is possible to identify some other points (tx, (A)) where 
the cost is the same. Figure 1 shows points t1 and t2 which have the discussed 
property. If the function admits values below the upper bound, this means that 
the wait at the starting node could reduce the link cost. It may then be stated that 
there could be an optimum departure instant A* (A* ≥ A), and an optimum 
waiting time w* = A* - A. It may be seen that A* exists and at the limit A* is 
equal to A. 
     An alternative method to locate A* is to draw a half-line with slope /4 
starting from the arrival point (A, (A)). Point t* is to be found in the half space 
where (t) is below the half-line. 
     The function (A) is obtained from forecast data [36, 37], and several 
specifications can be adopted. In the following, some particular cost functions 
are analysed. 

3.2.1 Linear functions 
In the linear case (figure 2), we assume that the cost function for each link is: 

       c = (t) = 
     a + b · t             if c ≥ c0 (1)
     c0             if c < c0

subject to: 
t ≥ 0 (2)
a ≥ 0 (3)
c0 ≥ 0 (4)

Parameter a is the link cost at instant t = 0, constraint (2) ensures time positivity, 
and constraint (3) ensures that the link cost is non-negative. Let: 

A* = (c0 – a)/b 

be the point of discontinuity of the function, that in this case is also the minimum 
point. 
 

 

Figure 2: Waiting time for linear functions. 
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Figure 3: Waiting time for exponential functions. 

In this case, the auxiliary function (t) is: 
                                l  (t) = d ∙ t + e if A ≤ t  (5)
with d = b + 1 and e = b - A. 
     The waiting time greater than zero, in this particular case, is allowed when 
(t) is decreasing, hence when d < 0: 

d = (b + 1) < 0 → b < -1 
     The previous condition implies that a cost function with b < -1 allows the 
waiting time at the node. 

3.2.2 Exponential functions 
In the exponential case (figure 3), we assume the cost function for each link as: 

  c (t) = a + b · exp (-·t) (6)
subject to (2), (3), (4). 
     The sum of the parameters a and b is the link cost in the instant t = 0, the 
constraints ensure time and cost congruence. 
     In this case, the auxiliary function (t) is: 

              l (t) = a + b · exp (‐∙t) + (t - A)          if A ≤ t  (7)

The function (t) admits a minimum at the point: 

A* = ln(·b)/ 

and the optimum waiting time is: w* = ln(·b)/A 

3.2.3 Periodic functions 
In the periodic case (figure 4), we assume that the cost function for each link is: 

c (t) = a + b · sin(2∙t/T + )   (8)

subject to (2), (3).  Here b ≤ a (to ensure that the cost is a positive value) where: 
T is the period; 
 is the phase difference. 
     In this case, the auxiliary function (t) is: 

              l (t) = a + b · sin(2∙t/T + ) + (t - A)             if A ≤ t  (9)
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The function (t) admits a minimum at the point (to recall that the minimum is 
repeated at regular intervals): 

A* = (T/2) · (-arcos(-T/2·b)+(2 - )) 
and the optimum waiting time is: 

w* = (T/2) · (-arcos(-T/2·b)+(2 - )) – A 
 

 

Figure 4: Waiting time for periodic functions. 

     In table 1 the discussed functions are reported, with some considerations on 
the parameters. 

Table 1:   Cost function characteristics. 
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     Let C  N be the set of centroid nodes, each centroid corresponding to the 
beginning and end of a path.  
     Let cjj be the cost of link (i, j): 

cij = 
 a time-dependent finite and positive value if the link exists

(10)
 +  otherwise

A path k is a sequence of consecutive links (without loops) connecting an initial 
node o (o  C) to a final node d (d  C). If we associate the graph with the cost 
functions (t), it is termed a network R(G, (t)). 
     The shortest paths in a network are characterized by the topology (ordered 
sequence of nodes belonging to the path) and by the cost (sum of the costs of the 
links belonging to the path and any other costs). Let zj be the shortest path cost 
from origin o to node j (using this definition, zo = 0 for each origin). 
     In a time-dependent network to build the shortest paths tree, a departure time 
t0 is set from origin o. All the other time values zj (11) refer to t0 (that can be set 
t0= 0 without losing generality):  

The shortest path search is based on a time-generalized Bellman optimality 
condition: 

                             zj = argMint, t ≥ Ai,v, i≠j (Ai,v + ij(t))   (12)

where the problem variables are time-dependent. 
     To solve the OOP, a Dijkstra modified algorithm is used. 

3.3.1 Existence 

Theorem 1  
At the beginning of this section a network was defined as a graph that has some 
cost associated functions. A connected network is a network where there is 
always at least one path between each origin/destination pair. In a connected 
transport network, for each origin, the shortest path tree with roots in the origin 
node can always be built. 

3.3.2 Uniqueness 

Theorem 2 In a connected network, with non-negative link costs, there is a 
unique solution to equation (13). Note that this theorem does not imply the 
uniqueness of the shortest path tree: there may be more than one shortest path 
tree but the cost vector z (with component zj the shortest path cost from origin o 
to node j) is always the same. 
     Let  
t0 be the departure instant from the origin; 
z = T[z1, z2, ..., zn] be the cost vector considering a short path tree; 
u = T[u1, u2, ..., un] be another possible solution to equation (13) such that  
uj ≠ zj for some nodes j.  

   zi   zi (t0)  (11)
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     Without losing generality we can assume that for all nodes except one, the 
costs are equal: 
ui = zi   i ≠ j (13)
uj ≠ zj  

As the cost zj is a shortest path cost, then uj > zj. 
     Since z and u are solutions of (13): 

zj = zi + ij(Ai,v) 
uj = ui +ij(Ai,v) 

zi being equal to ui, we have the same cost ij(t) in both cases (since the cost 
depends on the arrival time at the first node of the link). But, uj being greater 
than zj, then uj > zi + ij(Ai,v) and hence we should have uj > ui + ij(Ai,v) against 
the time-generalized Bellman optimality condition. Thus vector z is unique. The 
demonstration can be extended to the case where condition (13) has occurred on 
more than one node. 

3.4 VRP model 

The VRP can be formulated as an optimum problem; the output is a node client 
sequence for each vehicle. 
     Let: 
zi (t0),the shortest path cost from the origin to node i, starting from the origin at t0 
(i  C); 
zi,j (t0), the shortest path cost from node j to node i, starting from node j at t0 (i, j 
 C); 
zi,j (t), the shortest path cost from node j to node i, starting from node j at t (i, j  
C). 
     The problem can be formulated as: 

 = argMinij zi,j(t)•i,j, 
  (14)

subject to: 
capacity constraints (for each vehicle the capacity cannot be violated); 
congruence constraints (a user cannot be reached more than once, all 
vehicles return to the starting point); 
time-dependent constraints. 

where:  
is the solution cost;
i,j, is a binary variable equal to 1 if the path between i and j (i, j  C) 
belong to route , zero otherwise;  

     Route design is made considering the time-dependent paths. This assumption 
implies that the routes are also time-dependent. Note that in a route consisting of 
n nodes the cost of the path linking node j-1 with node j depends on departure 
time (arrival time + waiting) at node j-1. 
     To solve the VRP, a genetic algorithm could be used, which allows a solution 
to be found close to the optimal but with smaller computation times than an 
exact algorithm. 
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4 Conclusions 

This paper tackled the path and route design problem in a time-dependent 
network. After an overview of the models and procedures found in the literature, 
for path design we proposed a one-to-one problem in time-dependent networks. 
Its formulation was based on dynamic programming, considering the time-
generalized Bellman optimality condition. The solution procedure was based on 
Dijkstra’s algorithm. The route design proposed is a vehicle routing problem 
integrated with the above path design, whose formulation is an optimum problem 
with the aim of route cost minimization. 
     The main contribution of the paper concerns the design models, applied to 
optimize paths and routes for emergency vehicles in an evacuation scenario.The 
paths and routes are designed by taking into account the properties of a time-
dependent network. In the application on a real network, the data (obtained with 
real time observations) are integrated with forecast data (to define the costs on 
non-observed network elements). In the future, the shortest paths algorithm will 
be implemented both on test and real networks.  
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