
Optimisation of transit fares: a multimodal 
approach based on system and external costs 

B. Montella1, L. D’Acierno1 & M. Gallo2 
1Department of Transportation Engineering,  
‘Federico II’ University of Naples, Italy 
2Department of Engineering, University of Sannio (Benevento), Italy 

Abstract 

In this paper a model for the optimisation of transit fares is proposed and tested 
on a trial network. This model considers a multimodal transportation system 
under the assumption of elastic demand for simulating the impacts of fare 
policies on modal split. The model takes into account all system and social costs: 
(transit and road) user costs, firm costs and external costs. First tests on a trial 
network show the non-negligible impacts of transit fare design on the overall 
transportation system conditions and on social costs. 
Keywords: transit fares, multimodal optimisation, external costs, elastic demand. 

1 Introduction 

Fares for public transit services are generally set under the profitability 
threshold: ticket revenues cover only a (minor) part of operational costs, while 
the other part is subsidised by public funds. This faring policy is adopted for 
social and environmental reasons. 
     Chapleau [1], Hodge [2], Obeng [3] and Parry and Bento [4] studied the 
social aspects of the problem. More generally, the effects of transit pricing 
policies were studied by Ballou and Mohan [5], Ferrari [6], Huang [7], Karkaftis 
and McCarthy [8], Zhou et al [9], Wichiensin et al [10] and Proost and Van 
Dender [11]. 
     In this paper an optimization model for establishing transit fares is proposed; 
this model, in accordance with problem features, satisfies the following 
requirements: 
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 it assumes the transportation demand as elastic, for simulating modal split 
changes; 

 it simulates road and transit transportation systems jointly, to take into 
account the effects of modal split changes on congestion; 

 it considers different user classes with different socio-economic attributes; 
 it assumes an objective function that considers all costs: operational costs, 

user costs of both road and transit systems, and external costs. 
     Therefore, this problem can be seen as a multimodal network design problem 
(Montella et al [12]), in which transit fares assume the role of decisional 
variables. 
     A general formulation of pricing problem was provided by Cascetta [13], and 
the multimodal nature of the analysed problem was highlighted by Huang [7]. 
Finally Osula [14] showed how changes in transit fares can also modify trip 
generation. 

2 General solution approach 

In more complex cases, establishing public transit fares requires five phases (see 
fig. 1), that can differ according to the area under study. 
 

 
 
 
 
 
 
 
 

Figure 1: The general methodology of transit fare optimisation. 

     In the area identification phase the area covered by transit services under 
study is identified; it can be a town, or part of it, a province or a region. 
     The fare zone definition phase (see section 3) consists in subdividing the 
territorial area into zones, if it is so large that the fares have to be differentiated 
by trip length. The zones should take account of administrative divisions, land 
uses, pre-existence of fare regulations and user perception of fared zones. The 
transit fare optimisation phase searches for the optimal configuration of transit 
fares and is the focus of this paper. Evaluation of results can suggest 
modifications to area zoning; by comparing different results, the best zoning-fare 
combination is chosen. 

3 Fared zone definition 

If the area is so large that it is not fair to fix the same fare for any trip, the area 
has to be subdivided into fared zones; it is common in metropolitan areas, 
provinces and regions. 
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     In the literature, several methods have been proposed; they are based on 
distances (Cervero [15]; Daskin et al [16]), time intervals (Cervero [17]) or 
average travel times (Phillips and Sanders [18]). However, three main methods 
of fare zoning can be identified (fig. 2): concentric zones, circular rings and 
sector zones, and alveolar zones. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Fared zone types. 

     Concentric zones are mainly adopted where there is an important centre that 
attracts and/or generates most trips (e.g. a capital town). In this case, also fares 
for tangential trips are provided. If tangential trips are considerable, circular 
rings and sector zones are more used: in this case fares depend on the number of 
crossed zones. Finally, when there is not a main centre, the area can be 
subdivided into alveolar zones: fares depend on the number of crossed zones as 
well. 
     Although, theoretical speaking, each fare can be independent of the others, in 
general each fare can be defined according to the minimum fare, that is the fare 
of a trip inside a single zone, and of number of crossed zones. This relation can 
be expressed as: 
 
 Tb = tb

0 1T + Diag(tb
*) A Diag(N) (1) 

 
where Tb is the transit fare matrix, of dimensions (nTickets × nMaxCrossedZones), whose 
generic element ti

n is the fare of the i-th ticket type that allows up to n zones to 
be crossed; tb

0 is the vector of basic transit fare, of dimensions (nTickets × 1), 
whose elements ti

0 are the first row elements of matrix Tb and represent fares that 
allow travel only within the same zone (intra-zonal trips); 1 is a vector, of 
dimensions (nTickets × 1), whose elements are all equal to 1; tb

* is the vector of 
basic variation fares, of dimensions (nTickets × 1), whose elements represent the 
unit variation fare without considering any corrective coefficient; A is the 
corrective coefficient matrix, of dimensions (nTickets × nMaxCrossedZones), whose 
generic element ai

n is a corrective coefficient related to the i-th ticket type that 
allows up to n zones to be crossed; N is a vector, of dimensions (nMaxCrossedZones  
× 1), whose generic element nj is equal to (j – 1). 

Concentric zones Circular ring 
and sector zones 

Alveolar zones 
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     Eqn (1) is equivalent to the following: 
 
 Tb = Diag(tb

0)  Diag(N + 1) (2) 
 
where  is a matrix, of dimensions (nTickets × nMaxCrossedZones), whose generic 
element i

n is a coefficient related to the i-th ticket type that allows up to n zones 
to be crossed. Indeed, since both previous equations are linear, assuming 
Diag(tb

*) = Diag(tb
0) Diag(A*) (where A* is a vector whose generic element ai

* is 
equal to the ratio between ti

* and ti
0), it is possible to transform eqn (1) into eqn 

(2) via the following relation: 
 
  =1 [Diag(N + 1)]1 + Diag(A*) A Diag(N) [Diag(N + 1)]1 (3) 
 
where1 is a matrix, of dimensions (nTickets × nMaxCrossedZones), whose elements are 
all equal to 1. Thus, in this paper we propose to adopt eqn (2) for defining zoned 
fare criteria using the matrix  as the only parameter. 

4 Transit fare optimisation model 

The proposed transit fare optimisation model can be formulated as follows: 
 

 )(min arg^ *
b

*
cbb ,,Z ffT   T

bTb ST 
  (4) 

 
subject to: 
 
 (fc

*, fb
*) = (Tb, fc

*, fb
*) (5) 

 
with: 
 
 fc

*  Sfc
  ;  fb

*  Sfb
 (6) 

 
where Tb^ is the optimal value for Tb; STb

 is the feasibility set of matrices Tb; Z() 
is the objective function; fc

* is the equilibrium link flow matrix referred to the 
road system, of dimensions (nRoadLinks × nUserCategories); fb

* is the equilibrium link 
flow matrix referred to the transit system, of dimensions (nTransitLinks × 
nUserCategories); () is the multimode assignment function; Sfc

 is the feasibility set 
for fc

*; Sfb
 is the feasibility set for fb

*. 
     Constraint (5) represents the multimodal equilibrium assignment; it constrains 
road and transit flows to be in multimodal equilibrium for each configuration of 
transit fares, Tb. At equilibrium, the road and transit flows generate road and 
transit generalised costs that produces a modal split and path choices such that 
the same flows are reproduced. For solving the multimodal equilibrium 
assignment problem, in this paper we adopt the fixed-point model and the 
solution algorithms proposed by D’Acierno et al [19]. 
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     Constraint (6) indicates that flows have to belong to feasibility sets that 
express consistency of flows. 
     The proposed model shows a bi-level formulation: the upper level is the 
optimisation model (4) and the lower level is the assignment problem (5) subject 
to constraint (6). 
     If matrix  is fixed, through eqn (2), the optimisation model (4) can be 
simplified as: 
 

 )(min arg))(  )((min arg^ 000

00

*
b

*
cb

*
b

*
cbb ZZ

bb

f,f,t f,f,NDiagΓtDiag t
btbt

StSt 00

1


  (7) 

 
subject to: 
 

 )())(  )(()( 00 *
b

*
cb

*
b

*
cb

*
b

*
c f,f,tΛf,f,NDiagΓtDiagΛf,f  1  (8) 

 
with: 
 
 fc

*  Sfc
  ;  fb

*  Sfb
 (9) 

 
where tb

0^ and Stb
0 are respectively the optimal value and the feasibility set of tb

0. 
     This second model has less complexity since the vector tb

0 has only nTickets 
elements, while matrix Tb has nTickets  nMaxCrossedZones elements to be optimised. 
     In this paper we test two objective functions; the first is the objective function 
adopted in several transit network design problems that considers only system 
costs and user costs, adapted to our multimodal problem: 
 
 Z1(Tb, fc

*, fb
*) = OTC(Tb, fc

*, fb
*) + UGC(Tb, fc

*, fb
*) (10) 

 
where OTC() is the Operational Transit Cost and UGC() is the User 
Generalised Cost of all transportation systems. 
     The second also considers the external costs, EC(), produced by road traffic: 
 
 Z2(Tb, fc

*, fb
*) = OTC(Tb, fc

*, fb
*) + UGC(Tb, fc

*, fb
*) + EC(Tb, fc

*, fb
*). (11) 

 
     In both functions the transit revenues and the ticket costs for users are not 
present since they annul each other. 

5 First results and discussion 

The proposed optimisation model is tested on the simple network of fig. 3, where 
the problem may be solved in a closed form; this network has one link, a, shared 
by road and transit systems, and there is a single bus line l. Moreover, it is 
assumed that there is a single fared zone, a single ticket type, a single user 
category and hence a single fare, tb

0. 
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     The operational transit cost, OTC, is calculated as: 
 
 OTC = cl

oc Ll l (12) 
 
where cl

oc is the operational cost of line l; Ll is the length of line l; l is the 
service frequency of line l. 
 
 
 
 
 
 

Figure 3: Simple network framework. 

     Road travel time, UTCc,a, on the link is expressed by means of cost function 
ca(fc,a) and a road monetary cost (road/parking pricing), RMCa, can be applied on 
the link. 
     Transit travel time, UTCb,a, is the sum of the on-board time, assumed equal to 
the road travel time, ca(fc,a), the waiting time, equal to the ratio between a 
regularity term l and the frequency l of the line, and the access-egress time, cp, 
that is: 
 
 UTCb,a = ca(fc,a) + l/l + cp. (13) 
 
     The mode choice model is expressed by means of a Multinomial Logit model, 
where the systematic utility of road [transit] users is equal to: 
 
  a

TIME UTCc,a  a
COST RMCa/c  a

SE MSEc, 
 [ a

TIME UTCb,a  a
COST tb

0  b
SE MSEb]. (14) 

 
where MSEc [MSEb] is the socio-economic variable of modal choice model for 
road [transit] system and the  terms are the parameters of the model. Therefore 
the road travel demand is equal to: 
 

 `dc = d/(1 + exp((a
TIME(l/l + cp)  a

COST RMCa/c +  
 b

SE MSEb +, c
SE MSEc)/M) exp( a

COST tb
0/M). (15) 

 

and the transit travel demand is equal to: 
 

 db = d  dc. (16) 
 

     Assuming that capacity constraints are not present on the transit system, the 
transit (user) flow, fb,a, is equal to the transit demand, db; moreover, the road 
(vehicle) flow, fc,a, is equal to the ratio between the road demand, dc, and the  
 

  O                                       D
  
Road system             Transit system
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occupancy index, c, assumed constant. Therefore, objective function (10) can be 
written as: 
           Z1(tb

0, fc,a, fb,a) = cl
oc Ll l + d(l/l + cp) a

TIME/a
COST + (RMCa/c +, 

  (l/l + cp) a
TIME/a

COST) fc,a + d ca(fc,a) a
TIME/a

COST. (17) 
 
     Since objective function (17) is continuous with continuous first and second 
partial derivatives, the road travel time function is continuous with continuous 
first and second partial derivatives, and the feasibility set of transit fares is a 
closed interval [0, tb

0,max], solution tb
0^ of problem (7) is one of the points among 

endpoints of feasibility interval (i.e. 0 and tb
0,max) and valuestb

0 (of the above 
feasibility set) that satisfy conditions: 
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     If road travel time is estimated by means of a BPR function, that is: 
 
 ca(fc,a) = ca

0 (1 + a
BPR(fc,a)

a
BPR

/(c Capa)
a

BPR
) (19) 

 
it is possible to state that eqn (18) is satisfied with: 
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where ca
0 is the free-flow road travel time on link a, that is equal to the ratio 

between the length of link a and the free-flow average speed on the same link; 
a

BPR and a
BPR are parameters of the BPR function; Capa is the capacity of link 

a. Therefore if condition (21) is not satisfied, the solution of problem (7) is one 
of the endpoints of interval [0, tb

0,max]. 
     Adopting the parameters in table 1, the solution of problem (4) may be 
analysed. In particular, fig. 4 shows objective function (17) by different TWT 
values, with: 
 
 TWT = UTCb,a  UTCc,a = l/l + cp (22) 
 
where the TWT variation is obtained by l variation. 
 

Table 1:  Parameter values. 

d = 3,000 user/h a
TIME = 1.00 

Capa = 2,000 veh./h a
COST = 0.0833 

c = 1.30 user/veh. b
SEMSEb = c

SEMSEc 
a

BPR  = 0.15 M = 0.04 
a

BPR  = 4.00 l = 4.0 bus/h 
ca

0 = 4.80 min l = 0.50 
RMCa = 1.50 € cp = 2.50 min 

Ll = 4.00 km cl
oc = 4.00 €/km 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Objective function chart by TWT value. 

     A major result is that with TWT values lower than 8 min and higher than 10 
min the solution is an endpoint of feasibility interval (in this case tb

0,max is equal 
to €10.00). Besides when the solution is a value that puts the first derivative 
equal to zero, the transit fare increases when the TWT value increases. This 
means that, when the transit travel time increases with respect to the road travel 
time, the optimum of the system (hence the minimum value of the objective 
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function) can be obtained by increasing transit fares and hence moving users 
from the transit system to the road system. Indeed, although the increase in the 
number of road users increases both road and transit travel times and hence 
objective function value, the decrease in the number of transit users decreases the 
number of users that incur the transit waiting time (TWT) and yields a decrease 
in the objective function that counterbalances the increase due to travel time 
increases. 
     Fig. 5 shows that eqn (20) has an asymptotic trend to endpoints of its 
feasibility interval (expressed by 21). In this case the TWT variation yields a 
translation of tb

0 and endpoints of eqn. (20) feasibility set, where the offset is 
equal to the product of the value c, TWT variation and the ratio between a

TIME 
and a

COST. 
     Another important result is that, in fixing TWT values, an increase in road 
monetary costs yields a decrease in transit fares. Indeed, an increase in road 
monetary costs increases the objective function value while a decrease in transit 
fares yields a decrease in the number of road users that entails a decrease in both 
road and transit travel times, a decrease in users that have to support road 
monetary costs, and hence a decrease in the objective function value that 
counterbalances the increase due to the rise in road monetary costs. Finally, the 
dotted line, concerning the value of the road monetary cost equal to €1.50, 
intercepts curves in solution points of fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Transit fares by RMCa and TWT values. 

     An increase in the ratio between a
TIME and a

COST (for instance by fixing 
a

TIME and decreasing a
COST), yields an increase in both width of the feasibility 

interval and the value of the transit fare (as shown in fig. 6). 
     Introducing the external costs in the objective function, assuming that: 
 
 EC(tb

0, fc,a, fb,a) =  TUV db (23) 
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Figure 6: Transit fares by RMCa and values of time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Objective function chart by TUV values. 

where TUV is the Transit User Value that expresses the value that society 
associates to a user that travels on the transit system, the objective function (17) 
can be written as: 
 

Z2(tb
0, fc,a, fb,a) = cl

oc Ll l + d(l/l + cp) a
TIME/a

COST  TUV db + (RMCa/c +,  
 + TUV  (l/l + cp) a

TIME/a
COST) fc,a + d ca(fc,a) a

TIME/a
COST. (24) 

 
     Also in this case solution tb

0^ of problem (7) is one of the points among 
endpoints of feasibility interval (i.e. 0 and tb

0,max) and valuestb
0 (of the above 

feasibility set) that satisfy the conditions (18) for Z2(). 
     Fig. 7 shows that an increase in term TUV yields a decrease in transit fares. 
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6 Conclusions and research prospects 

The model proposed in this paper allows transit fares to be optimised, reducing 
the total costs of multimodal transportation system. The tests on a trial network 
show the importance of considering the external costs in the objective function. 
Research prospects will be addressed to apply the model to real networks and 
propose solution algorithms that can be adopted in real-scale cases. 
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