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Abstract 

A new discrete model is presented for the evaluation of the dynamic 
characteristics, i.e. eigenfrequencies and eigenmodes, of tanks of arbitrary shape 
and fill level. The accuracy and efficiency of the proposed methodology is 
demonstrated via a number of comparison studies. The above discrete model is 
combined with structural and soil simulation models for the efficient dynamic 
analysis of 3-D tanks under earthquake excitation. The obtained results are in 
excellent agreement to those obtained using detailed analytical and FEM models.   
Keywords:  discrete sloshing model, arbitrary geometry, arbitrary fill level, 
seismic excitation, dynamic fluid-structure-soil interaction. 

1 Introduction 

The safe keeping and uninterrupted flow of liquids or liquid-like materials is of 
crucial and multifold importance to the industrialized world. Therefore, the 
interest on the seismic behaviour of modern structures used for storage of such 
materials has remained strong since the pioneering work of Lamb [1] and is 
periodically reinforced by the disruption caused by several seismic events, e.g. 
the 1964 Alaska earthquake. A simple, but accurate and efficient, methodology 
for the estimation of the hydrodynamic pressures exerted on the walls of a tank, 
was proposed in the pioneering work of Housner [2].  In these studies on non-
deformable vertical prismatic tanks resting on rigid foundations, the solution 
describing the total hydrodynamic pressure was decomposed into two discrete 
parts: the “impulsive” and the “convective”.  The impulsive pressure component 
is due to a portion of the liquid accelerating with the rigid tank, while the  
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convective pressure is exerted by the sloshing motion oscillating at a 
fundamental frequency. The “impulsive-convective” pressure concept along with 
the findings of a number of follow up studies, as referenced below, lie at the 
basis of almost all recent design codes and guidelines, e.g. API Standard 650 [3], 
Eurocode 8 [4] and ASCE [5].  
     In addition to the dynamics of a rigid liquid container, a number of other 
issues, of special interest to structural engineering, have been studied since these 
early works, most notably: the interaction between the deformable tank walls and 
the contained liquid, e.g. Veletsos and Shivakumar [6], and the interaction 
between the supporting medium (soil) and the tank structure, including uplifting 
and anchoring effects, e.g. Natsiavas and Babcock [7].  In contrast to the vast 
body of publications concerning vertical prismatic tanks, only few works have 
appeared on other tank geometries, e.g. Patkas and Karamanos [8].  This 
extensive analytic and numerical effort is supported by several experimental 
studies, e.g., Abramson et al. [9].  A more complete list of references on this 
subject can be found in the review articles of Rammerstorfer and Scharf [10], 
Ibrahim et al. [11].   
     Finally, brief reference is made to numerical solutions obtained by application 
of the most popular numerical methods, i.e. the finite (FEM) and the boundary 
(BEM) element methods, since they provide the means for the solution of 
complicated geometries, boundary conditions and couplings between the liquid 
and solid domains.  A comprehensive discussion and literature review on these 
matters can be found in Rizos and Karabalis [12]. 
     A search through the literature leaves no doubt that the “impulsive-
convective” pressure concept is almost universally used for the analysis and 
design of vertical prismatic tanks.  However, very little or no information exists 
regarding the application of this concept to tanks of other geometries while the 
distribution of the hydrodynamic pressure on the walls of tanks of non-prismatic 
geometry is almost completely missing.  This is mainly due to the fact that the 
development of impulsive-convective spring-mass systems is based, in most 
cases, on analytical solutions and, thus, the development of such simple solutions 
for more complicated geometries and boundary conditions is precluded.  This 
work proposes a simple numerical methodology for the computation of the 
impulsive-convective mass system that can be used in the seismic design of 
liquid containers of arbitrary shape and fill height.  To this end, an eigenvalue 
analysis is used in conjunction with a simple fluid model which is readily 
accessible through most of the commercially available general purpose FEM 
programs, e.g. ANSYS [13].  Even though a FEM analysis can handle a variety 
of complicated fluid and structural models, as well their various interactions, in 
an effort to concentrate on the influence of the geometry and to illustrate the 
generality of the proposed methodology, the fluid flow model used in this work 
is linear (small free surface amplitude) and inviscid (slip wall condition), while 
the tank walls are assumed rigid.   
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2 Numerical formulation 

The eigenvalue analysis of a fluid volume can be routinely performed, following 
an appropriate FEM discretization, by most of the available FEM general 
purpose programs and results such as the eigenfrequencies ωi and the 
corresponding eigenvectors {φ}i (i=1,2,…,3N) are obtained, where N is the total 
number of nodal points. However, it should be noted that only those modes 
corresponding to a vertical motion of the free surface are of interest and retained 
for further analysis. 
     The total hydrodynamic pressure, applied on the tank walls, during a 
horizontal seismic excitation, can be decomposed into an impulsive part, 
associated with the fluid motion that has zero relative acceleration with respect to 
the tank, and a convective part, associated with the fluid sloshing motion.  
Likewise, the total horizontal force applied on the tank due to the fluid motion 
can be decomposed into an impulsive and a convective component. The sloshing 
motion can be represented as a superposition of few eigenmodes of the fluid 
motion.  In general, each eigenmode generates a hydrodynamic wall pressure of 
unique distribution, but not all of these modes contribute to the development of a 
nonzero horizontal force on the tank.  For example, for a vertically axisymmetric 
tank, the eigenmodes, which are responsible for the generation of a nonzero 
horizontal hydrodynamic force and, thus, influence the horizontal motion of the 
tank structure, are only those that exhibit free-surface antisymmetry with respect 
to a plane parallel to the tank axis of symmetry.  These are the eigenmodes of 
interest in this work and hereafter are referred as “sloshing modes”.  The discrete 
masses MCn, associated with the sloshing modes n=1,…,∞, are called convective.  
The convective masses and the impulsive mass MI, i.e. the remaining portion of 
the total mass moving in synchronism with the tank, are related via the principle 
of conservation of mass as 

 
1

L I Cn
n

M M M




   (1) 

where ML stands for the entire liquid mass. The instantaneous value of the total 
horizontal hydrodynamic force or base shear, F, applied on the tank due to the 
liquid motion, can be computed as [6] 
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where ( )x t  is the acceleration of the tank structure and  un(t)  is the response of a 

single degree-of-freedom system, with  frequency ωn,which is computed using as 
forcing input the acceleration of the tank. In view of the form of eqn (2), the 
concept of an oscillator with multiple degrees-of-freedom is employed in this 
work. Therefore, the convective mass MCn of each sloshing mode is equal to an 
effective modal mass computed as, e.g. Chopra [14], 

 2( )Cn Cn nM L M  (3) 
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where     T

n n n
M M   is the generalized mass of eigenmode n, and 

    T

Cn n
L M I , with  I  being the unit vector in the direction of the seismic 

excitation. A schematic representation of a convective-impulsive system, for a 
tank of arbitrary shape under horizontal seismic excitation, is shown in fig. 1 
where the convective portion of the liquid is substituted by an equivalent system 
of masses and springs, while the impulsive portion reduces to a single mass 
rigidly connected to the tank wall. 
 

 

Figure 1: Impulsive-convective model for the representation of fluid motion. 

     On the basis of the previous discussion, the spring constants for each 
convective mass can be calculated as 

 2
Cn n CnK M . (4) 

     The position height, hCn or hn, of each mass depends on the convective-
impulsive pressure distribution on the tank wall.  For vertical prismatic tanks the 
position heights are available in analytic form, e.g. Refs [2, 11].  For a spherical 
tank or a horizontal cylinder of diameter D, all discrete masses should be placed 
at the geometrical center, i.e. hCn=hn=D/2, since all resultant forces due to fluid 
pressure are applied at the geometrical center of the container.  For arbitrary tank 
geometries, the corresponding heights can be calculated via a straightforward 
numerical integration of the fluid pressure distribution and subsequent 
positioning of the resultant force using standard procedures, e.g. Ref. [6].  
     Similarly, the total hydrodynamic pressure distribution on the tank wall can 
be decomposed, into an impulsive part, a convective part, and an axisymmetric 
part, associated with the axisymmetric eigenmodes of the fluid motion which do 
not contribute to the total horizontal force, as 

        
1 1
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where θ and φ are the azimuth and meridian angles, respectively, as shown in fig. 
2, pI is the impulsive pressure, pCn is the convective pressure due to sloshing  
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Figure 2: Coordinate system for axisymmetric (with respect to axis z) tanks. 

mode n and pAm is the axisymmetric pressure due to axisymmetric mode m.  For 
vertically axisymmetric tanks under horizontal seismic excitation, only the 
sloshing modes are excited and the axisymmetric pressure is zero.  The 
impulsive pressure is given by the expression 

          txRCtp II  cos,,   (6) 

while the convective pressure, for each sloshing mode n, by the expression 

          tuRCtp nnCnCn  cos,, 2  (7) 

with CI and CCn being dimensionless pressure profile functions which depend on 
the tank fill height. The computation of CI and CCn is based on a series of 
dynamic mode superposition analyses. Thus, for any fill height, the response of 
the fluid-structure FEM model to an arbitrary seismic excitation is computed 
taking into consideration only the n-th sloshing mode. The resulting 
hydrodynamic pressure distribution is equal to pCn, and, therefore, the profile 
functions CCn can be computed using eqn (7). Then, a time domain simulation is 
performed, based on the same seismic excitation as in the dynamic mode 
superposition analysis, and the total hydrodynamic pressure distribution p is 
obtained. Finally, the impulsive pressure distribution pI results from eqn (5) and 
the corresponding pressure profile function CI from eqn (6). 

3 Numerical example 

A series of numerical studies have been performed for the validation of the 
accuracy and efficiency of the proposed methodology. Due to lack of space, only 
an example pertaining to a seismic analysis of a spherical tank is presented in 
this work. However, the interested reader can find a series of related results in 
Drosos et al. [15], Drosos [16] and Drosos [17]. 
     The spherical tank under investigation is shown in fig. 3. Its diameter is 20m, 
its equator is located 12.5m above the foundation, and contains a liquid with 
mass density ρ=522Kg/m3.  The supporting system of 11 columns and 11 pairs 
of diagonal braces is resting on a circular foundation ring of external diameter 
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20m, approximately, which, in turn, rests on a category C soil medium [4]. Two 
models are considered for comparison purposes: (a) a detailed FEM where the 
fluid has been simulated by a mesh of 3D elements (ANSYS-FLUID80) and (b) 
a simplified model where the mass of the liquid has been decomposed into 
impulsive and convective parts in full accordance with eqns (1)-(7).  The results 
of this decomposition, as used in the simplified model, are listed in table 1. 
However, details about the geometry, soil-structure interaction constants, 
material properties, etc., can be found in [15–17].  
 

 

 

Figure 3: Models of spherical tanks: (a) a detailed FEM model and (b) a 
simplified model. 

 

Table 1:  Impulsive mass and convective mass and spring constants.  

 
Fill level 

50% 100% 

Impulsive mass + mass 
of steel shell 
(ΚΝsec2/m) 

445.6+394.5 2186.7+394.5 

Convective mass MC1 
(ΚΝsec2/m) 

621.4 0 

Spring constant KC1 
(ΚΝ/m) 

954 - - 

 
     With regard to the constants of table 1 it should be noted: (a) Only the first 
convective mode has a non-negligible effect on the dynamic behavior of this 
tank, and is used in the following, (b) the impulsive mass is rigidly attached to 
center of the sphere along with the mass of the steel shell, (c) the convective 
mass MC1 is attached to the center of the sphere via the corresponding spring KC1, 
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(d) obviously no sloshing occurs in a full tank and thus the corresponding 
convective mass is zero. 
     The eigenvalue analysis of the above two models is shown in table 2.  Three 
levels of liquid fill are investigated: (a) empty tank, (b) half full tank, and (c) full 
tank.  For all three cases two types of boundary conditions are considered: (i) the 
structure is fixed at its foundation, and (ii) soil-structure interaction (SSI) via the 
usage of spring and dashpot elements appropriate for a ring foundation [17]. The 
most important eigenvalues of the two models are listed along with the 
corresponding percentage of participating mass. Apparently there is a very good 
agreement between the results obtained by the two models. The results for the 
empty tank indicate that the two models are virtually equivalent with regard to 
their masses and stiffnesses. The results for the two fill levels, i.e. 50% and 
100%, also serve as a proof that the impulsive and convective masses computed 
by the proposed model can represent the fluid-structure model in an effective and 
accurate way.      

Table 2:  Results of eigenvalue analysis of FEM and simplified impulsive-
convective models of spherical tank. 

Fill 
Support 

conditions 

Simplified model FEM model 
Period 
Τ (sec)

P a r t i c i p a t i n g  

m a s s  (%) 

Period 
Τ (sec)

P a r t i c i p a t i n g  

m a s s  ( % )  

0% 
Fixed 0.250 99.10 0.242 96.80 

SSI 0.185 63.70 0.185 60.30 

50% 
Fixed 0.361 57.70 0.353 57.20 

SSI 0.399 54.00 0.392 56.60 

100% 
Fixed 0.630 98.70 0.592 83.60 

SSI 0.690 55.00 0.649 87.00 

4 Conclusions 

A simple and computationally-effective model has been proposed for the 
simulation of sloshing liquids in tanks of arbitrary shape. The methodology for 
the computation of the convective and impulsive masses and the associated 
spring constants is based on standard FEM analyses available in almost all 
commercially available finite element software. Seismic analyses of elevated 
spherical tanks, simulating realistic structures, reveal the computational 
efficiency and accuracy of the proposed models. Obviously, the use of the 
proposed discrete models results in a dramatic reduction of the size of the 
dynamic model.  Thus, it can become a useful tool for quick, yet accurate, 
analyses in the design office. 
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