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Abstract 

The numerical modelling of the time evolution of stresses and strains in 
brickwork under sustained loads is dealt with, within the framework of linear 
viscoelasticity. Finite element analyses were carried out, using three different 
masonry models: a simplified 2D layered model, and two 3D models (one for 
header bond masonry; one for Flemish bond masonry). The creep behaviour of 
the component materials (bricks and mortar) was defined according to 
experimental data available in the literature. These results were best fitted by 
Prony series, and the obtained creep laws were employed to carry out FE 
analyses of the masonry walls with different textures. Owing to the different 
mechanical response of the components to sustained loads, the stress and strain 
distribution in the wall changes in time and differs from that at the beginning of 
the loading process. The different behaviour of the two considered brick patterns 
is pointed out. The possibility of applying the simplified layered model instead 
of refined 3D models to predict the time evolution of stresses and strains is 
discussed. 
Keywords: masonry, creep, linear viscoelasticity, header bond, Flemish bond. 

1 Introduction 

The application of sustained loads on masonry structural elements induces creep 
phenomena, accompanied by a redistribution of stresses and strains. Under 
service loads, strains usually stabilize after a given time. On the contrary, 
damage effects (i.e. microcracks) induced by heavy loads can coalesce and grow, 
bringing the structural element to failure. In the former case, anyway, the long-
term stress and strain state can differ, even considerably, from the short-term 
one. 
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     An overview of the mechanical (rheological) models currently employed to 
describe the creep behaviour of masonry and other quasi-brittle materials can be 
found in [1]. In the present work, only the response of brickwork under service 
loads will be investigated: accordingly, mortar joints and units will be assumed 
to have a linear viscoelastic behaviour. 
     The layout of this paper is as follows. First the mathematical modeling of the 
creep behaviour of the masonry constituents is dealt with, within the framework 
of linear viscoelasticity (Sec. 2.1). The selected model is calibrated using creep 
test data obtained by other authors on brick and mortar samples (Sec. 2.2). 3D 
finite element models of two walls characterized by different brick textures are 
developed and subjected to numerical creep tests; a simplified 2D layered model 
is also considered (Sec. 3.1). The time evolution of the wall displacements 
predicted by the different models is compared with the experimental one to 
validate their reliability (Sec. 3.2). The influence of the brick pattern on the time 
evolution of the stresses is analyzed in Sec. 4; comparisons with the predictions 
given by the simplified 2D model are also added. Finally, the main findings of 
the work are summarized in Sec. 5. 

2 Mathematical modelling of experimental creep tests 

2.1 Mathematical modelling 

Within the design stress range, the components of brick masonry (units and 
mortar) can be individually assumed to have a linear viscoelastic behaviour. 
Provided that loads are applied when the structural element is sufficiently 
hardened, the mechanical properties of the brickwork constituents are sensibly 
invariant in time, so that they can be assumed to be non-ageing materials. 
     For linear viscoelastic non-ageing materials subjected to any prescribed 
uniaxial stress history starting at time t = 0, according to Boltzmann’s 
superposition principle the strain at any time t > 0 is given by (see e.g. [2]) 

 ,)()()(
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dtJt    (1) 

where J is called creep compliance. Provided that time derivatives are intended 
in the distribution’s sense, stress histories including jumps can also be taken into 
account in eq. (1).  
     Conversely, if a material element is subjected to a prescribed uniaxial strain 
history, the stress-strain law can be written as  

 .)()()(
0
 
t

dtEt    (2) 

E is called relaxation function, and is often denoted by R in the literature, 
accordingly. The creep compliance is the ‘inverse’ of the relaxation function in 
the sense of Carson transforms [2]. 
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     Based on the so-called generalized Maxwell rheological model [3], consisting 
of linear springs and dashpots, the relaxation function can be expressed in the 
form 
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where E is the equilibrium (or delayed) modulus, Ei are called relaxation 
strengths and i relaxation times. Note that the instantaneous modulus is E0 = E 
+ Ei. The series expression in eq. (3) is usually referred to as a Prony (or 
Dirichlet) series.  
     For isotropic materials subjected to 3D strain histories, the stress-strain law 
can be obtained assuming that eq. (2) holds both for the hydrostatic stress (pI) 
and the deviatoric stress (S): 
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where e(t) (resp. (t)) is the volumetric strain (resp. the deviatoric strain) at time 
t, K (resp. G) is the bulk (resp. the shear) relaxation modulus, and I is the identity 
tensor. Both relaxation moduli are assumed to be of the form (3), namely 
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where K (resp. G) is the long-term bulk (resp. shear) modulus. In general, the 
relaxation times i

K and i
G might differ from each other; for the sake of 

simplicity, i
K = i

G  i (i = 1 … n) will be assumed from here onwards. 
     Focusing on the material shear behaviour, the deviatoric stress at any time t 
can be expressed as 
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where G0 is the instantaneous shear modulus, gi are dimensionless relaxation 
shear coefficients and 
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     The summation in eq. (6) is the deviatoric “creep” strain, cr(t), that is, the 
difference between the total strain and the instantaneous elastic strain, S(t)/2G0. 
     Similar remarks apply to the viscoelastic volumetric behaviour of the 
material.  
     The creep model described above is implemented in the commercial finite 
element code Abaqus, which was used in the applications presented in Sections 3 
and 4. Details about the numerical integration of eq. (6) can be found in [4]. 
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2.2 Experimental results 

To illustrate the creep behaviour of masonry and its constituents, reference will 
be made to the results carried out by Brooks [5] and reported in [6] together with 
a theoretical prediction of the creep curves obtained from tests on masonry walls.  
     Calcium silicate bricks were subjected to a sustained stress of 3 MPa for 300 
days, whereas Portland cement and lime sand mortar specimens were tested for a 
similar period under a stress of 3.4 MPa. The results obtained are reported in 
Fig. 1, together with a best fit of the experimental points by Prony series, eq. (3), 
of one or two terms. The values of the parameters defining the theoretical creep 
curves are listed in Table 1: the volumetric creep behaviour of bricks and mortar 
is assumed to be defined by the same non-dimensional coefficients gi that define 
their deviatoric creep behaviour (see eq. (6)).  
 

  
 

Figure 1: Creep tests on (a) calcium silicate bricks and (b) Portland cement-
lime sand mortar: experimental tests [5] vs. theoretical modelling 
by Prony series. 

Table 1:  Parameters defining the creep behaviour of bricks and mortar 
(eq. (6)) employed in the numerical simulations. 

  brick mortar 

E0 [MPa] 17100 7700 

G0 [MPa] 7435 3208 

n = 1 
g1 0.5327 0.7602 

1 [days] 33.8 7.1 

n = 2 

g1 0.285 0.690 

1 [days] 11.1 3.1 

g2 0.275 0.125 

2 [days] 100.1 243.1 
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     It can be noted that using Prony series of two terms, rather than one term, 
definitely improves the match with the experimental points. In particular, a best 
fit with two terms captures a primary creep phase of a duration longer than the 
creep test itself, conforming with the experimental data. 
     A single-leaf wall made of the same constituents was also subjected to a creep 
test of a duration of 300 days under a vertical stress of 3 MPa: the experimental 
results reported in [6] are shown in Fig. 2. These results will be used in Sec. 3.2 
to validate the proposed finite element models. 
 

 

Figure 2: Creep tests on a single-leaf wall made of calcium silicate bricks and 
Portland cement-lime sand mortar [6]. 

3 Numerical simulation of creep tests on masonry walls 

3.1 Finite element models of brick masonry walls 

The creep behaviour of brickwork was numerically investigated using three 
different finite element models: a simplified two-dimensional (layered) model 
(Fig. 3(a)) and two more detailed three-dimensional models reproducing a header 
bond brickwork (Fig. 3(b)) and a Flemish bond brickwork (Fig. 3(c)). The 
layered model consists of thirteen 65 mm-thick brick courses, alternated with 12 
mm-thick mortar bed joints, thus matching the geometry of the brickwork 
subjected to the creep test shown in Fig. 2 [6]. The 3D models consist of 20 brick 
courses: the size of the units is 55  120  250 mm; bed and head mortar joints 
have a thickness of 10 mm. The mortar-to-brick thickness ratio is 0.18 both in 
the 2D and in the 3D models. 4-node and 8-node isoparametric elements, with a 
bilinear discretization of the displacement field, were employed in the 2D and in 
the 3D analyses, respectively.  
     In the applications, the self-weight of the materials is disregarded, as it was 
numerically found to have negligible effects on the results. The models are 
subjected to a uniform vertical stress of 3 MPa at the top side; the lower base is 
fully restrained. 
     Simulations of creep tests of a duration of 300 days using creep laws 
described by Prony series of one or two terms were carried out. The material 
parameters employed in the numerical applications are those listed in Table 1. 
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(a) (b) (c) 

Figure 3: Finite elements employed in the numerical applications: 
(a) simplified 2D layered model; (b) 3D Flemish bond brickwork 
model; (c) 3D header bond brickwork model. 

3.2 Creep curves 

The results of the simulation of the creep test shown in Fig. 2 using the 2D 
layered model of Fig. 3(a) are shown in Fig. 4, where the vertical displacement 
of the central node of the top side is plotted vs. time. Again, using Prony series 
of two terms to describe the creep behaviour of bricks and mortar definitely 
improves the fit with the experimental data also when the global response of 
brickwork has to be predicted.  
 

Figure 4: Creep tests on a single-
leaf wall: experimental 
results [6] vs. predictions 
of the 2D FE model. 

Figure 5: Simulation of creep tests 
on a single-leaf wall 
with different numerical 
models. 

     The same creep test is numerically simulated using the 3D models shown in 
Figs. 3(b), (c), both using one term and two terms in the Prony series for the 
creep laws of the constituents. The results obtained are shown in Fig. 5. 
Apparently, the difference between the Flemish bond model and the header bond 
model is negligible when the same number of terms in the creep law is used. The 
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simplified 2D model and the 3D models predict the same time evolution, the 2D 
model being slightly more deformable than the 3D ones. 

4 Stress evolution 

It is instructive to follow the time evolution of the stress components in typical 
regions of a masonry wall, according to the different numerical models 
employed in the present work (see Fig. 3). Only creep laws consisting of Prony 
series of two terms are considered. 
     Fig. 6 shows the distribution of the vertical stress in the 3D models at the 
beginning of the application of the load. The stress fluctuation induced by the 
brickwork heterogeneity is apparent: this fluctuation cannot be captured by the 
simplified layered model, which obviously predicts a uniform vertical stress of 
3 MPa in both layers throughout the entire load history. The vertical stress tends 
to flow across the bricks bypassing the softer head joints. 
 

 (a) (b) 

Figure 6: Vertical stress in (a) Flemish bond and (b) header bond brickwork 
under a uniform vertical load of 3 MPa at t = 0. 

     Fig. 7 shows the pattern of the transversal stress (i.e., the normal stress 
component parallel to the mortar beds) over the 3D models at the application of 
the vertical load. As is well known, owing to Poisson’s effect bed joints are 
compressed and bricks are mostly in tension parallel to the mortar beds. The 
highest tensile stresses are encountered close to the head joints, which are mainly 
subjected to transverse tension too: these stresses might be responsible for the 
failure of the brick/mortar interface along these joints.  
     Plots of specific stress and strain components versus time, computed at 
different points of the models, are shown in Figs. 9 to 11. All the plots refer to 
points in the brickwork sufficiently far from the model boundaries. As far as the 
layered model is concerned, points located on the mid-section of the model in the 
brick and in the mortar layers will be considered. The points where stresses and 
strains are computed in the 3D models are shown in Fig. 8. These include points 
located in stretchers (s1, s2), headers (h, h1, h2), bed joints (bj, bj1, bj2) and head 
joints (hj). Points near the outer face of the wall (ext), as well as near the wall 
mid-surface (int), are considered. 
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 (a) (b) 

Figure 7: Transversal stress in (a) Flemish bond and (b) header bond 
brickwork under a uniform vertical load of 3 MPa at t = 0. 

   

 

 
(a)  (b) 

Figure 8: Points where stresses and strains are computed in (a) Flemish bond 
brickwork and (b) header bond brickwork. 

4.1 Flemish bond brickwork 

The time evolution of the vertical (axial) stress in selected points of Flemish 
bond brickwork is shown in Figs. 9(a) and (b): Fig. 9(a) refers to the points 
located in the bricks, whereas Fig. 9(b) to points located in the bed and head 
joints. Note that the time evolution of the stress in most points is not monotonic: 
the stress attains a maximum (or a minimum) nearly 30 days after loading, and 
takes values close to the long-term ones at nearly 100 days after loading. 
     The 2D layered model underestimates the axial stress in the bricks (Fig. 9(a)), 
except for the innermost region of the headers (curve h1,int). The highest axial 
stresses are attained at the shortest sides of the stretchers, especially at the 
interior of the wall (curve s2,int). The difference between the short-term 
predictions of the 2D model and the 3D model ranges between 2–3% in the 
headers (points h1,int and h1,ext) and 9–11% at the shortest sides of the stretchers 
(points s2,int and s2,ext). These differences increase in time: the highest 

bj1 h s2 

s1

hj h1 h2 bj bj2 hj
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discrepancy 300 days after loading is attained at the vertices of the stretchers 
(point s2,int), and is of the order of 20% of the stress predicted by the 2D model. 
     On the contrary, the layered model overestimates the axial stress in most 
regions of the mortar joints (Fig. 9(b)), except for the bed joints (curve bj,ext). In 
particular, the axial stress predicted by the 2D model is nearly twice that 
computed in the head joints in the short term (points hj,int and hj,ext), and the 
long-term prediction is only 27% of the applied stress. 
     The main differences between the predictions given by the 2D model and the 
3D model of Flemish bond brickwork are observed in terms of transversal 
stresses, which are plotted in Fig. 10 versus time. Fig. 10(a) refers to points 
located in bricks; Fig. 10(b), to points located in mortar. Contrary to the axial 
stress, the transversal stress predicted by the layered model varies in time, and 
ranges between 0.02 and 0.06 MPa in the brick layer and between -0.1 and  
-0.32 MPa in the mortar layer during the numerical creep test. 
     The 2D model underestimates the tensile transversal stress in most regions of 
the stretchers and overestimates the stress in the headers (Fig. 10(a)). The highest 
computed stresses in the stretchers (curve s2,int) vary between 0.13 MPa at t=0 
 

 
(a) (b) 

Figure 9: Time evolution of the axial stress in Flemish bond brickwork: 
(a) bricks; (b) mortar. 

 

 
(a) (b) 

Figure 10: Time evolution of the transversal stress in Flemish bond brickwork: 
(a) bricks; (b) mortar. 
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and 0.18 MPa at t=300 days, attaining non-negligible values contrary to the 
predictions of the 2D model. 
     The compressive transversal stress in the mortar joints is underestimated by 
the 2D model: the highest compressions are found in the bed joints (curve bj1,int 
in Fig. 10(b)) and vary in time from -0.46 to -0.61 MPa. As already remarked, 
the transversal stress computed in the head joints is tensile (curve hj,int/ext in 
Fig. 10(b)), and might cause debonding at the interface between bricks and head 
joints. 

4.2 Header bond brickwork 

Fig. 11(a) shows the time evolution of the axial stress in the points of the header 
bond brickwork indicated in Fig. 8(b). The time evolution of the stress in most 
points is not monotonic, similarly to Flemish bond brickwork. The 2D layered 
model predicts axial stresses very close to those computed in the bed joints of the 
3D model (curve bj in Fig. 11(a)), and intermediate between the stresses 
computed at the center (curve h1) and at the vertices (curve h2) of the headers. At 
the center, the axial stress is lower than the applied stress by a 3% in the short 
term, and by 5% in the long term. At the vertices, the axial stress exceeds by 9% 
the applied stress at the beginning of the creep test; it furtherly increases in the 
long term, exceeding by 15% the applied stress. The layered model definitely 
overestimates the stress in the head joints (curve hj), that varies between half of 
the applied stress at t=0 and 27% of the applied stress in the long term. 
 

 
(a) (b) 

Figure 11: Stress evolution in header bond brickwork: (a) vertical stress and 
(b) transversal stress. 

     The time evolution of the transversal stress in selected points of the header 
bond brickwork model is shown in Fig. 11(b). The stress predicted by the 2D 
model in the bricks falls between those computed at the center (curves h1,int, 
h1,ext) and at the vertices (curve h2) of the headers. Similarly to the case of 
Flemish bond brickwork, the 2D model definitely underestimates the 
compressive stress in the bed joints (curve bj): the stress predicted by the layered 
model is nearly half that computed by the 3D model in the long term. Again, the 
transversal stress in the head joints is tensile (curve hj,int/ext in Fig. 11(b)), of 
the same order of magnitude of that computed in Flemish bond brickwork. 
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     Finally, note that, owing to its simpler pattern, in header bond brickwork 
stresses are more uniform across the wall thickness than in Flemish bond 
brickwork (compare curves h1,int and h1,ext in Figs. 11(a) and 11(b)). 

5 Concluding remarks 

The purpose of the study presented in this paper was twofold: on the one hand, 
assessing whether the creep behaviour of brickwork could be predicted using a 
simplified layered two-dimensional model rather than sophisticated 3D models; 
on the other hand, analysing the influence of the brick pattern on the distribution 
of the stresses and their redistribution in time under a constant load.  
     According to the comparisons discussed Sec. 3, it can be stated that (a) the 
layered model predicts the experimental global creep strain of a single-leaf wall 
with fair accuracy, provided that two terms are employed in the Prony series that 
describe the creep behaviour of the individual components (see Fig. 4); (b) the 
layered model and the three-dimensional models of two different brickworks 
basically predict the same axial creep strains (see Fig. 5). This indicates that 
neither the brick pattern, nor the head joints, affect the global deformation of the 
wall significantly. 
     On the contrary, the differences in terms of vertical stresses and, even more, 
horizontal stresses predicted by the 2D model and the 3D models are very 
pronounced. This is basically due to the fluctuation of stresses (and strains) from 
one component to another in the same layer because of the presence of the head 
joints that cannot be captured by the layered model. Using the simplified 2D 
model might give acceptable predictions of the axial stress in the headers of the 
analyzed brickworks and in the bed joints of header bond brickwork, but the 
axial stress in the stretchers and in the bed joints of Flemish bond brickwork is 
heavily underestimated. The transversal stresses predicted by the 2D model are 
mostly unreliable. Debonding is likely to occur at the interface between bricks 
and head joints according to the high tensile stresses computed. To predict the 
time evolution of the stresses across any brickwork with more accuracy, the 
inability of the head joints to transfer transversal stresses should be taken into 
account. 
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