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ABSTRACT 
Anaerobic digestion is a popular method for treating waste and producing biogas. It remains challenging 
to automate and optimize the operation of the digester because of its complex process and it suffers 
from great uncertainty. Therefore, it is extremely crucial to understand the influence of different model 
parameters on the output variables. Although anaerobic digestion processes have been studied 
extensively, few of these have performed sensitivity analyses. The present study explores the potential 
effects of varying 48 stoichiometric and kinetic parameters and input variables in the well-known 
Anaerobic Digestion Model No. 1 (ADM1) on the 35 output variables. The sensitivity analysis enables 
the identification of key parameters and variables relevant to the model uncertainty. The python 
implementation of ADM1 was used to identify the system behavior and sensitivity to the input 
parameters and variables from the mathematical point of view. The analysis provides all the correlations 
and sensitivity indexes between input variables/parameters and output variables. pH, as one of the 
critical output variables, shows the highest sensitivity to 𝑇௕௔௦௘, 𝑘ௗ௘௖,௔௖, and 𝑆௔௡.௜௡, among all 
parameters and input variables. As another example, methane concentration in the gas phase is sensitive 
to temperature bases variables, namely 𝑇௕௔௦௘ and 𝑇௢௣. 
Keywords:  sensitivity analysis, ADM1, anaerobic digestion, biogas, local sensitivity analysis. 

1  INTRODUCTION 
Anaerobic digestion is the process of treating organic matter biochemically in the absence of 
oxygen [1]. Digestion occurs in digesters and local chambers, where fermentation reactions 
are regulated and optimized. Anaerobic digestion of organic wastes and industrial byproducts 
is a multi-stage complex process leading to biogas production, primarily composed of 
methane (CH4) [2]. This method of energy generation, which has been used for centuries, is 
a viable alternative for sustainable energy production. Nevertheless, it does present some 
challenges inherent in the operation of such a complex and unpredictable system [2]–[4]. The 
biogas consists of CH4, CO2, H2, and H2S [5].  
     The integrated anaerobic model, Anaerobic Digestion Model No. 1 (ADM1), was 
developed in 2002 by the International Water Association (IWA) Task Group for 
Mathematical Modeling of Anaerobic Digestion Processes [6]. ADM1 is one of the most 
common platforms for modeling and simulating anaerobic digestion [7]. ADM1 consists of 
processes simulating all possible reactions in anaerobic sludge, such as biological and 
physicochemical reactions. Biological reactions include disintegration, hydrolysis of 
suspended solids, microorganism uptake (growth), and decay. Ion association/dissociation 
and liquid–gas transfer are covered in physicochemical reactions [2]. The original ADM1 
comprises 35 differential algebraic equations (DAE) organized into five groups used to 
simulate the concentrations and rates of numerous species in the liquid and gas phases. This 
categorization and the number of DAEs assigned to each group are shown in Table 1 [8], [9]. 
     Apart from these differential equations, the ADM1 model has many parameters and input 
state variables, summarized in Table 2, affecting the process’s performance [8], [9]. Due to 
anaerobic digestion’s dynamic and nonlinear nature, it is very vulnerable to instabilities and 
uncertainty. Although most of the over one hundred parameters have precise and predictable  
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Table 1:  Classification and number of original ADM1 DAEs [8]. 

Liquid phase equations 
Soluble matter 12
ion states 6
Particulate matter 12
Cations and anions modeling 2
Gas-phase equations 
Gaseous products 3

Table 2:  Classification and number of parameters and variables in ADM1 [8]. 

Parameters 
Stoichiometry 41
Biochemical 36
Physiochemical 25
Physical 2
State variables 
Input state variables 26

 
values, several are uncertain, such as the uncertain feedstock quality. On the other hand, input 
state variables in real-world applications are likewise subject to great uncertainty. As a result, 
the efficient operation of a biogas production unit requires an in-depth grasp of the system’s 
uncertainties. 
     There are two different approaches to conducting a sensitivity analysis, local and global 
sensitivity analysis [10]. A local sensitivity analysis considers the sensitivity of a single 
parameter value change, whereas a global sensitivity analysis considers the sensitivity of the 
complete parameter distribution [11]. Anaerobic digestion processes have been extensively 
studied, but sensitivity analyses have been few and far between [12]. Barahmand and 
Samarakoon [13] conducted an extensive literature review of different approaches to dealing 
with the uncertainty inherent to anaerobic digestion processes. Baldé et al. [2] performed a 
sensitivity analysis on ADM1 to determine some ADM1 input state variables and related 
hydrolysis kinetics. Ramin et al. [14] conducted a global sensitivity analysis using BSM2 on 
a secondary settling tank in the wastewater treatment plant. They used two different tools to 
perform this global sensitivity analysis. First, standardized regression coefficients method 
using linear regression of Monte Carlo simulations and second Morris screening. Using local 
sensitivity analysis combined with a series of Monte Carlo simulations and a multivariate 
regression technique, Xu [15] proposed a partial least square method to validate the calibrated 
parameter set. Solon et al. [16] performed a global sensitivity study on ADM1 to determine 
the effect of uncertainty on the substrate composition, kinetics, stoichiometry, and mass 
transfer parameters. Two methods (Morris screening method and standardized regression 
coefficients) were used to perform the global sensitivity analysis. Trucchia and Frunzo [12] 
conducted a global sensitivity analysis on ADM1 to calibrate the model parameters.  
     The present study aims to conduct a comprehensive local sensitivity analysis (one-at-a-
time methodology) on ADM1’s input parameters and variables to investigate the effect of 
each on the output variables. This study employs the python implementation of Anaerobic 
Digestion Model No. 1 [17]. The remainder of the article is organized as follows: Section 2 
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provides the mathematical structure behind this model, Section 3 provides the results and 
discusses them, and Section 5 concludes the study. 

2  MATHEMATICAL STRUCTURE 

2.1  ADM1 mathematical framework 

The ADM1 model is a complex nonlinear model commonly used to simulate anaerobic 
digestion. Anaerobic digestion is organized into five main stages in the ADM1 model: 
disintegration, hydrolysis, acid genesis, acetogenesis, and methanogenesis (Fig. 1). The first-
order biochemical process is assumed for all extracellular processes, while a Monod type is 
assumed for all intercellular reactions [2]. The influent’s chemical oxygen demand (COD) is 
divided into 13 input state variables, 11 biodegradable, including a composite substrate, 
carbohydrates, proteins, lipids, sugars, amino acids, long-chain fatty acids, butyrate, valerate, 
propionate, and acetate. Inert COD is also split into soluble and particulate components [18]. 
     Each substrate was considered as a group of fractions degrading at varying rates. By 
definition, hydrolysis is the limiting rate for particulate fractions, so their disintegration rate 
was represented by first-order hydrolysis kinetics [19].  
 

 

Figure 1:  The reaction paths borrowed. (Source: Adapted from [6].) 
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     Jeppsson and Rosen [9] implemented ADM1’s ordinary differential equation (ODE) 
model. For the soluble matters, the general form of the differential equations 1–12 can be 
written as: 

ௗௌ೥

ௗ௧
ൌ

௤೔೙

௏೗೔೜
൫𝑆௭,௜௡ െ 𝑆௭൯ ൅ ℱ൫𝜌௔, 𝑓௣௥௢ௗ௨௖௧,௦௨௕௦௧௥௔௧௘, 𝑁௖, 𝑌ௗ, 𝐶௘൯, (1)

where 𝑆௭ is soluble substrate concentrations in 𝑘𝑔. 𝐶𝑂𝐷. 𝑚ିଷ, 𝑞௜௡ in the influent volumetric 
flow rate in 𝑚ଷ𝑑ିଵ, 𝑉௟௜௤ is the volume of the liquid in 𝑚ଷ, 𝑆௭,௜௡ is the concentration of the 
influent soluble substrate in 𝑘𝑔. 𝐶𝑂𝐷. 𝑚ିଷ, ℱ represents different functions and variables 
defined in Jeppsson and Rosen [9]. 𝜌௔ represents 19 biochemical process rates, six acid-based 
rates, and three gas transfer rates in 𝑑ିଵ. 𝑓௣௥௢ௗ௨௖௧,௦௨௕௦௧௥௔௧௘ is the yield (catabolism only) of 
the product on a substrate in 𝑘𝑔. 𝐶𝑂𝐷. ሺ𝑘𝑔. 𝐶𝑂𝐷ሻିଵ, 𝑁௖ is the nitrogen content of component 
c in 𝑘, 𝑚𝑜𝑙𝑒. 𝑁. ሺ𝑘𝑔. 𝐶𝑂𝐷ሻିଵ,  𝑌ௗ is the yield of biomass on a substrate in 
𝑘𝑔. 𝐶𝑂𝐷. ሺ𝑘𝑔. 𝐶𝑂𝐷ሻିଵ, and 𝐶௘ is the carbon content of component e in 
𝑘. 𝑚𝑜𝑙𝑒. 𝐶. ሺ𝑘𝑔. 𝐶𝑂𝐷ሻିଵ. 
     The general form of differential equations 13–24 associated with particulate matters is: 

ௗ௑೥

ௗ௧
ൌ

௤೔೙

௏೗೔೜
൫𝑋௭,௜௡ െ 𝑋௭൯ ൅ ℱሺ𝜌௔, 𝑓௣௥௢ௗ௨௖௧,௦௨௕௦௧௥௔௧௘, 𝑌ௗሻ, (2)

where 𝑋௭ is the concentration of particulate component (biomass) z in 𝑘𝑔. 𝐶𝑂𝐷. 𝑚ିଷ, and 
𝑋௭,௜௡ is the concentration of influent biomass z in 𝑘𝑔. 𝐶𝑂𝐷. 𝑚ିଷ. 
     The general form of differential equations 25 and 26, cations and anions, does not include 
ℱ term. 

ௗௌ೎ೌ೟శ/ ೌ೙ష

ௗ௧
ൌ

௤೔೙

௏೗೔೜
൫𝑆௖௔௧శ/ ௔௡ష,௜௡ െ 𝑆௖௔௧శ/ ௔௡ష൯, (3)

where 𝑆௖௔௧శ is the concentration of cation, 𝑆௔௡ష is anion concentration, and 𝑆௖௔௧శ,௜௡ and 
𝑆௔௡ష,௜௡ are input cation and anion all in 𝑘. 𝑚𝑜𝑙𝑒. 𝑚ିଷ. Moreover, there are six differential 
equations 26–32 for ion states. The general form is: 

ௗௌೢ

ௗ௧
ൌ െ𝜌஺.௜, (4)

where 𝑆 is concentration, 𝜌 is the acid-base rates. w and i are defined in Table 3. 

Table 3:  Defining w and i in eqn (4). 

𝒘 𝒊 
𝑣𝑎ି 4 
𝑏𝑢ି 5 

𝑝𝑟𝑜ି 6 
𝑝𝑟𝑜ି 7 
𝑎𝑐ି 10 
𝑛ℎଷ 11 

 
     The last three differential equations 33–35 are related to the gas phase with the general 
form of: 

ௗௌ೒ೌೞ.ೠ

ௗ௧
ൌ െ

ௌ೒ೌೞ.ೠ௤೒ೌೞ

௏೒ೌೞ
൅ 𝜌்,௟

௏೗೔೜

௏೒ೌೞ
, (5)
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where 𝑆௚௔௦.௨ is the concentration of gases (ℎଶ. 𝑐ℎସ. 𝑐𝑜ଶ) in 𝑘𝑔. 𝐶𝑂𝐷. 𝑚ିଷ, 𝜌்,௟ is the gas 
transfer rates in 𝑑ିଵ, and 𝑞௚௔௦ is the gas flow in 𝑁𝑚ଷ𝑑ିଵ, and 𝑉௚௔௦ is the gs volume in 𝑚ଷ. 
Except for these differential equations, there are numerous intermediate equations such as 
biochemical process, acid-based and gas transfer rates, inhibition-related equations, and 
algebraic equations. Table 4 summarizes the number of equations in the ADM1 model.  

Table 4:  Classification of the ADM1 equations [9]. 

Model equations 
No. of 

equations
Model equations 

No. of 
equations 

Process rates 28 Process inhibition equations 15 
 Biochemical process rates 19 Differential equations 35 
 Acid-base rates 6 Water phase equations 32 
 Gas transfer rates 3 Soluble matter 12 
Algebraic equations 30 Particulate matter 12 
 Soluble matter 14 Cations and anions 2 
 Inhibition 5 Ion states 6 
 Ion states 4 Gas-phase equations 3 
 Gas-phase equations 7  

2.2  Sensitivity analysis 

This study aims to verify the consequences of parameter variations on the output using the 
one-at-a-time methodology. Sensitivity analysis [20] is one of the most important steps in 
uncertainty analyses. Like many other cases, sensitivity analysis is tied with fuzzy set theory. 
To have a more realistic and robust model, it is crucial to define the fuzzy values accurately 
for the parameters with higher sensitivity [21]. Moreover, in complex systems such as 
ADM1, many inputs and outputs interact with each other.  
     Some input parameters have a positive coloration with the output parameters, and others 
negative. It is important to be aware of these correlations for uncertainty analysis tools such 
as fuzzy calculations and arithmetics. In Section 1, two different approaches (global and 
local) to sensitivity analysis were introduced. Zhou and Lin defined the local sensitivity 
analysis as “the assessment of the local impact of input factors’ variation on a model response 
by concentrating on the sensitivity in the vicinity of a set of factor values” [22]. Sensitivity 
analysis can be defined by the sensitivity index (SI) defined below [23]: 

𝑆𝐼 ൌ
% ௖௛௔௡௚௘ ௜௡ ௢௨௧௣௨௧ ௩௔௥௜௔௕௟௘

% ௖௛௔௡௚௘ ௜௡ ௜௡௣௨௧ ௣௔௥௔௠௘௧௘௥
. (6)

     By changing the value of a single input parameter, the change of an output variable can 
be calculated, but it cannot be a measure of comparison with other variations. SI is a unitless 
number that allows one to compare the variations with different scales [24].  
     The present study selected 48 input variables and parameters to investigate the sensitivity 
analysis. These variables and parameters were classified into different groups according to 
their specific biological significance. The groups are biochemical, physiochemical, and 
physical parameter values and steady-state input variable values. Biochemical parameters 
include first-order parameters for hydrolysis (𝑘௛௬ௗ,௖௛, 𝑘௛௬ௗ,௣௥, 𝑘௛௬ௗ,௟௜), first-order decay rates 
for substrates (𝑘ௗ௘௖,௦௨, 𝑘ௗ௘௖,௔௔, 𝑘ௗ௘௖,௙௔, 𝑘ௗ௘௖,௖ସ, 𝑘ௗ௘௖,௣௥௢, 𝑘ௗ௘௖,௔௖, 𝑘ௗ௘௖,௛ଶ), half-saturation 
values (𝑘௠,௦௨, 𝑘௠,௔௔, 𝑘௠,௙௔, 𝑘௠,௖ସ, 𝑘௠,௣௥௢, 𝑘௠,௔௖, 𝑘௠,௛ଶ), equivalent oxygen transfer 



240  Sustainable Development and Planning XII

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and the Environment, Vol 258, © 2022 WIT Press

coefficient (𝑘௅௔ ), the concentrations of the six microbial species in influent (𝑋௦௨,௜௡, 𝑋௔௔,௜௡, 
𝑋௙௔,௜௡, 𝑋௖ସ,௜௡, 𝑋௣௥௢,௜௡, 𝑋௔௖,௜௡, 𝑋௛ଶ,௜௡), influent substrate’s volumetric flow rate (𝑞௜௡), and 
system temperatures (𝑇௢௣, and 𝑇௕௔௦௘), etc. On the other hand, as mentioned earlier, there are 
35 differential equations needed to be solved. As a result, there are 35 output variables (Table 
5). Moreover, pH also can be calculated indirectly using an algebraic equation in the ion state 
using 𝑆௛ା. The full list of 48 input parameters/variables used in the sensitivity analysis is 
provided in Table 6. These parameters/variables were defined by Batston et al. [6]. 

3  RESULT AND DISCUSSION 

3.1  Simulation setup 

To perform this sensitivity analysis study, a python implementation of ADM1 was employed 
[17]. Initial values are required for the numerical solution of DAEs. As with many differential 
equation systems, the ADM1 is sensitive to initial values. This study employs these initial 
values reported in Barahmand [8]. These initial values are listed in Table 5.  

Table 5:  Initial values at steady-state [8]. 

Parameters/ 
variables 

Initial 
values 

Parameters/
variables

Initial 
values

Parameters/
variables

Initial 
values 

𝑆௦௨ 0.012 𝑋௫௖ 0.315 𝑆௛ା 3.45E-8 
𝑆௔௔ 0.006 𝑋௖௛ 0.029 𝑆௩௔ି 0.012 
𝑆௙௔ 0.103 𝑋௣௥ 0.108 𝑆௕௨ି 0.014 
𝑆௩௔ 0.012 𝑋௟௜ 0.026 𝑆௣௥௢ି 0.016 
𝑆௕௨ 0.014 𝑋௦௨ 0.421 𝑆௔௖ି 0.212 
𝑆௣௥௢ 0.016 𝑋௔௔ 1.194 𝑆ு஼ைଷି 0.143 
𝑆௔௖ 0.213 𝑋௙௔ 0.210 𝑆஼ைଶ 0.010 
𝑆௛ଶ 2.44E-7 𝑋௖ସ 0.437 𝑆ேுଷ 0.004 
𝑆௖௛ସ 0.055 𝑋௣௥௢ 0.139 𝑆ேுସା 0.126 
𝑆ூ஼ 0.153 𝑋௔௖ 0.749 𝑆௚௔௦.ுଶ 1.06E-5 
𝑆ூே 0.130 𝑋ுଶ 0.310 𝑆௚௔௦.஼ுସ 1.622 
𝑆ூ 0.320 𝑋ூ 25.601 𝑆௚௔௦.஼ைଶ 0.014 

𝑆௖௔௧ 0.040 𝑆௔௡ 0.020   

3.2  Sensitivity analysis results 

As discussed earlier, local sensitivity analysis is a one-at-a-time methodology that studies the 
effect of variation in a single input parameter on the output variables when other input 
parameters are fixed with no variation. Table 6 provides the information about the applied 
step change for each input parameter/variable. By calculating percent changes in the output 
variable and applying them to eqn (6), the sensitivity index (SI) associated with each input 
parameter/variable and output variable can be obtained. Table 7 provides all the significant 
sensitivity indices (greater than 9e-4). The positive and negative SI indicates the positive and 
negative correlation between variables. A negative SI occurs when the output variable 
decreases by increasing an input variable. In the uncertainty analysis (specifically in 
mathematical approaches), both SI and its sign play a crucial role. For example, in fuzzy set 
theory, the higher SI means that the fuzzy input variables should be defined as realistic as 
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possible because the system’s sensitivity is high. The sign of the SI, on the other hand, is 
important when the upper and lower limits (highest and lowest possible outcomes) should be 
calculated. 

Table 6:  The variations in the value of input parameters/variables. 

No. Inputs From To No. Inputs From To 
1 𝑇௕௔௦௘ 298 300 25 𝑆௩௔.௜௡ 0.001 0.0012 
2 𝑇௢௣ 308 303 26 𝑆௕௨.௜௡ 0.001 0.0012 
3 𝑘ௗ௜௦ 0.5 5 27 𝑆௣௥௢.௜௡ 0.001 0.0012 
4 𝑘௛௬ௗ,௖௛ 10 50 28 𝑆௔௖.௜௡ 0.001 0.0012 
5 𝑘௛௬ௗ,௣௥ 10 50 29 𝑆௛ଶ.௜௡ 1.00E-8 1.20E-8 
6 𝑘௛௬ௗ,௟௜ 10 50 30 𝑆௖௛ସ.௜௡ 1.00E-5 1.20E-5 
7 𝑘௠,௦௨ 30 60 31 𝑆ூ஼.௜௡ 0.04 0.048 
8 𝑘௠,௔௔ 50 100 32 𝑆ூே.௜௡ 0.01 0.012 
9 𝑘௠,௙௔ 6 12 33 𝑆ூ.௜௡ 0.02 0.024 

10 𝑘௠,௖ସ 20 40 34 𝑋௫௖.௜௡ 2 4 
11 𝑘௠,௣௥௢ 13 26 35 𝑋௖௛.௜௡ 5 10 
12 𝑘௠,௔௖ 8 16 36 𝑋௣௥.௜௡ 20 40 
13 𝑘௠,௛ଶ 35 70 37 𝑋௟௜.௜௡ 5 10 
14 𝑘ௗ௘௖,௦௨ 0.02 0.5 38 𝑋௦௨,௜௡ 0.01 0.1 
15 𝑘ௗ௘௖,௔௔ 0.02 0.5 39 𝑋௔௔.௜௡ 0.01 0.1 
16 𝑘ௗ௘௖,௙௔ 0.02 0.5 40 𝑋௙௔.௜௡ 0.01 0.1 
17 𝑘ௗ௘௖,௖ସ 0.02 0.5 41 𝑋௖ସ.௜௡ 0.01 0.1 
18 𝑘ௗ௘௖,௣௥௢ 0.02 0.5 42 𝑋௣௥௢.௜௡ 0.01 0.1 
19 𝑘ௗ௘௖,௔௖ 0.02 0.5 43 𝑋௔௖.௜௡ 0.01 0.1 
20 𝑘ௗ௘௖,௛ଶ 0.02 0.5 44 𝑋௛ଶ.௜௡ 0.01 0.1 
21 𝑘௅௔ 200 300 45 𝑋ூ.௜௡ 0.01 0.1 
22 𝑆௦௨.௜௡ 0.01 0.012 46 𝑆௖௔௧.௜௡ 0.04 0.08 
23 𝑆௔௔.௜௡ 0.001 0.0012 47 𝑆௔௡.௜௡ 0.02 0.04 
24 𝑆௙௔.௜௡ 0.001 0.0012 48 𝑞௜௡ 170 180 

Note: The units are based on [6] and [9]. 

 
     In Table 7, the first column represents the 48 input parameters/variables listed in Table 6. 
For example, pH, as one of the critical output variables, shows the highest sensitivity to the 
base 𝑇௕௔௦௘, 𝑘ௗ௘௖,௔௖, and 𝑆௔௡.௜௡ (−0.204, −0.014, and −0.011 respectively) among all 
parameters and input variables. The negative sign in all sensitive parameters mentioned 
above means that increasing them leads to a pH drop. As another example, methane 
concentration in the gas phase is sensitive to temperature bases variables, namely 𝑇௕௔௦௘ and 
𝑇௢௣.The system’s highest sensitivity belongs to the effect of 𝑇௕௔௦௘ on 𝑆௔௖ by −32.01. Table 7 
can be used as a reference in uncertainty studies on ADM1. 
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Table 7:    Sensitivity index (SI) associated with each input parameter/variable and output 
variable. 

 
 

 

 𝑺𝒔𝒖 𝑺𝒂𝒂 𝑺𝒇𝒂 𝑺𝒗𝒂 𝑺𝒃𝒖 𝑺𝒑𝒓𝒐 𝑺𝒂𝒄 𝑺𝒂𝒄 𝑺𝒉𝟐 𝑺𝑰𝑪 𝑺𝑰𝑵 𝑺𝑰 

1       -32.010  6.236 1.799 -0.012 0.027 

2       -0.077  0.048 0.006   

3       0.001     0.010 

4             

5       0.003   0.001 0.001  

6             

7 -0.506            

8  -0.505           

9   -0.557      0.001    

10    -0.515 -0.516  0.001      

11      -0.538 0.001      

12       -0.702  0.002 0.014  0.001 

13   -0.030 -0.013 -0.013 -0.038  -0.509     

14 0.338      0.001     0.004 

15  0.320     0.004   0.001 0.001 0.012 

16   1.793      -0.002 0.001 0.001 -0.001 

17    0.504 0.524      0.001 0.004 

18      7.783 -0.011  -0.002 -0.006   

19 0.013 0.013 1.812 7.235 8.090 8.065 2.412 19.229 -0.024 -0.037 0.003 -0.006 

20   0.024 0.010 0.010 0.031 0.001 0.371    0.003 

21       0.006  -0.082    

22             

23             

24             

25             

26             

27             

28             

29             

30             

31       -0.160  -0.049 0.013   

32       0.274  0.011 0.053 0.076  

33       0.000     0.062 

34    -0.001 0.002 0.002 0.035 0.001 0.001 0.012 0.015 0.570 

35   0.001 -0.030 0.021 0.014 -0.178 0.004 -0.006 -0.012 -0.029 0.064 

36  0.003  0.027 -0.004 0.026 32.583 0.009 0.036 0.094 0.962 0.219 

37   0.023 -0.002 0.001 0.001 -0.023 0.004 0.043 -0.017 -0.020 0.043 

38 -0.015           0.001 

39  -0.006          0.001 

40   -0.031         0.001 

41    -0.015 -0.015       0.001 

42      -0.039      0.001 

43       -0.019     0.001 

44   -0.001 -0.001 -0.001 -0.002  -0.020    0.001 

45             

46       -0.135  -0.047 0.012   

47       -0.240  -0.023 -0.117   

48 0.733 0.728 0.942 0.779 0.780 0.888 1.482 0.739 0.157 -0.053 -0.035 -0.354 
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Table 7:  Continued. 
 

 
 
 

 𝑿𝒙𝒄 𝑿𝒄𝒉 𝑿𝒑𝒓 𝑿𝒍𝒊 𝑿𝒔𝒖 𝑿𝒂𝒂 𝑿𝒇𝒂 𝑿𝒄𝟒 𝑿𝒑𝒓𝒐 𝑿𝒂𝒄 𝑿𝑯𝟐 𝑿𝑰 

1 0.029 0.003 0.001  0.003 0.001  0.001 0.001 0.330 0.001 0.001 

2          0.001   

3 -0.099 0.001   0.001    0.001    

4  -0.200   0.001        

5   -0.200   0.001  0.001 0.001 0.001 0.001  

6    -0.200   0.001      

7     0.001        

8             

9 0.001      0.012   0.002 0.002  

10        0.001 0.001    

11         0.002  0.001  

12 0.001         0.007   

13       0.001      

14 0.005   0.001 -0.036  0.001      

15 0.013 0.001   0.001 -0.036   0.001    

16 -0.002      -0.041   -0.006 -0.007  

17 0.005       -0.036  0.000   

18         -0.040 -0.003 -0.007  

19 -0.007 -0.001   -0.001  -0.039 -0.021 -0.038 -0.042 -0.023  

20 0.003      -0.001    -0.036  

21             

22     0.002    0.001    

23             

24             

25             

26             

27             

28             

29             

30             

31          0.002   

32          -0.003   

33             

34 0.613 0.066 0.018 0.001 0.063 0.018 0.001 0.021 0.030 0.022 0.025 0.014 

35 0.069 0.900 0.002 0.008 0.861 0.002 0.008 0.060 0.256 0.147 0.209 0.002 

36 0.238 0.026 0.978 0.000 0.024 0.971  0.899 0.649 0.337 0.548 0.005 

37 0.047 0.005 0.001 0.991 0.048 0.001 0.976 0.004 0.015 0.159 0.199 0.001 

38 0.001    0.017        

39 0.001     0.006       

40 0.001      0.035      

41 0.001       0.017     

42 0.001        0.052    

43 0.001         0.010   

44 0.001          0.023  

45            0.108 

46          0.001   

47          0.002   

48 0.600 0.951 0.983 0.987 0.227 0.257 0.242 0.253 0.245 0.234 0.246 -0.009 
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Table 7:  Continued. 
 

 

4  CONCLUSION 
Although most of the over one hundred parameters have precise and predictable values, 
several are uncertain, such as the uncertain feedstock quality. On the other hand, input state 
variables in real-world applications are likewise subject to great uncertainty. As a result, 

 𝒑𝑯 𝑺𝒗𝒂െ 𝑺𝒃𝒖െ 𝑺𝒑𝒓𝒐െ 𝑺𝒂𝒄െ 𝑺𝑯𝑪𝑶𝟑െ 𝑺𝑪𝑶𝟐 𝑺𝑵𝑯𝟑 𝑺𝑵𝑯𝟒൅ 𝑺𝒈.𝑯𝟐 𝑺𝒈.𝑪𝑯𝟒 𝑺𝒈.𝑪𝑶𝟐 

1 -0.204 -0.009 -0.008 -0.009 -32.016 1.356 8.141 -21.865 0.692 -1.187 1.223 0.347 

2 -0.003    -0.077 0.003 0.050 -0.046 0.001 -1.007 -0.961 -0.967 

3     0.001        

4             

5     0.003 0.001  0.002 0.001    

6             

7             

8             

9             

10  -0.515 -0.516  0.001   0.001     

11    -0.538 0.001   0.001     

12 0.001    -0.702 0.016 -0.003 0.018 -0.001 -0.001 0.002 -0.003 

13  -0.013 -0.013 -0.038 0.000     -0.509   

14     0.001   0.001     

15     0.004 0.001  0.002 0.001    

16      0.001 0.001  0.001 0.001 -0.001 0.001 

17  0.504 0.524      0.001    

18 -0.001   7.778 -0.011 -0.007 0.002 -0.008 0.001  -0.001 0.002 

19 -0.014 4.255 4.939 4.655 1.540 -0.041 0.032 -0.042 0.004 22.413 -0.022 0.032 

20  0.010 0.010 0.031 0.001   0.001  0.371   

21     0.006  -0.004 0.004  0.129  -0.003 

22             

23             

24             

25             

26             

27             

28             

29             

30             

31 -0.006    -0.160 0.006 0.110 -0.098 0.003 -0.011 -0.056 0.109 

32 0.005    0.275 0.059 -0.025 0.159 0.074 0.003 0.013 -0.025 

33             

34  -0.001 0.002 0.002 0.035 0.012 0.007 0.020 0.015 -0.004 -0.002 0.007 

35 -0.006 -0.030 0.021 0.013 -0.178 -0.019 0.087 -0.121 -0.026 -0.031 -0.031 0.086 

36  0.027 -0.004 0.026 32.583 0.094 0.094 0.962 0.962 -0.062 -0.014 0.091 

37  -0.001 0.001 0.001 -0.023 -0.017 -0.021 -0.016 -0.020 -0.021 0.025 -0.022 

38             

39             

40             

41  -0.015 -0.015          

42    -0.039         

43     -0.019        

44  -0.001 -0.001 -0.002      -0.020   

45             

46 -0.006    -0.135 0.006 0.105 -0.088 0.003 -0.010 -0.054 0.105 

47 -0.011 -0.001  -0.001 -0.240 -0.129 0.052 -0.168 0.005 -0.005 -0.026 0.052 

48 -0.007 0.779 0.780 0.888 1.481 -0.061 0.056 -0.147 -0.031 0.574 0.048 0.050 
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operating a biogas production unit efficiently requires an in-depth grasp of the system’s 
uncertainties. The sensitivity analysis is crucial in uncertainty analysis with mathematical 
approaches such as fuzzy set theory. Through a comprehensive local sensitivity analysis and 
a python implementation of ADM1, the possible effects of varying 48 input parameters and 
variables on 35 output variables were explored. The sensitivity indices and correlations can 
be used in further studies on the anaerobic digestion model under uncertainty. 
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