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Abstract

We examine a stochastic optimization model of a multiple reservoir water resource
system in which the spilled outflows may have a different routing than the
turbined outflows. We extend some results about the monotonicity of optimal
decision rules, which were known for particular routings, and we show their
validity for arbitrary routings of spilled outflows, provided they satisfy an intuitive
monotonicity condition. Special cases are when the spilled outflows are expelled
from the system, or when the spilled outflows are routed to the next reservoir
downstream. The monotonicity of optimal policies and of the corresponding future
value function can be exploited to develop efficient computational algorithms
based on a dynamic programming methodology, especially when the rewards are
given by a concave, piecewise linear function of electricity generation.
Keywords: multi-reservoir system, hydro-power production, turbined outflow
routing, spilled outflow routing, arborescent network, incidence matrix, stochastic
optimization model, stochastic dynamic programming, convex analysis, monotone
optimal policy.

1 Introduction

The problem of optimizing long-term production for a hydroelectric system with
multiple reservoirs is notoriously difficult, and most optimization models assume
a planning horizon in which time is discretized into a finite number of fixed length
intervals or periods. Due to the large variability of weather systems, the natural
hydraulic inflows are represented by random variables, thus forming a stochastic
process whose evolution laws are investigated by statistical analysis of time series
data from historical records. Because typical inflow processes were found to

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2007 WIT PressWIT Transactions on Ecology and the Environment, Vol 104,

River Basin Management IV  31

doi:10.2495/RM070041



be Markovian, the methodology of Markov decision processes (i.e., stochastic
dynamic programming) is considered appropriate for the long-term planning of
hydroelectric systems (see, e.g., Lamond and Boukhtouta [1]).

The usual source of revenue is from sales of the pooled electricity produced by
the generators in the system. The electricity is sold in various markets, each with its
own demand and unit price. Utility companies also have other means of producing
electricity, such as thermal plants using fossil fuels. Any deficit in hydroelectric
generation results in variable costs (mostly from fuel purchases) for operating
the thermal plants. By comparison, variable costs of hydroelectric generation are
negligible. Moreover, it is not possible to store electricity for future consumption,
therefore any surplus production must be liquidated immediately on a spot market,
usually at a discount price. Hence the profit function for hydroelectric production is
the difference between total revenues from electricity sales and total fuel purchase
costs.

A standard assumption is that revenues in one period are given by a concave
function of total electricity production, while costs are given by a convex function
of total thermal production. Profits are then a concave function of the hydroelectric
energy produced. This reward function is usually represented by a piecewise
polynomial function, possibly nondifferentiable at the breakpoints (see, e.g.,
Hanscom et al [2]). Another standard assumption is that the variance on future
demands and prices can be neglected by comparison with the very large variance of
the natural inflows. In this paper, we assume the one-period expected rewards are
given by an increasing, concave function of the system’s hydroelectric production.

Another important assumption we make is that the amount of electricity
produced at any hydro-plant is proportional to the volume of water released
through its turbines during the period, and that it is independent of the volume
of water stored in the adjacent reservoir. When combined with the preceding
paragraph, this assumption implies that the one-period reward is a concave
function of the decision variables. The concavity property, in turn, is essential in
the derivation of important structural properties of optimal solutions.

From a practitioner’s viewpoint, this assumption may raise two objections: (i)
in many actual hydro-plants, turbine efficiencies vary significantly with the stored
volumes, due to the effect of water head on the turbines, and (ii) for a given head,
the power response curves of the turbines are nonlinear functions of the water
flow. Concerning the latter objection, it has been found that with an adequate
commitment sequence for the different turbines of a same hydro-plant, the linear
approximation is reasonably accurate under normal operating conditions (see, e.g.,
Hanscom et al [2]). Concerning the former, we note that for many large, multi-year
reservoirs, the head varies by less than 5% around its mean value. Moreover, as was
found in Lamond [3] and Lamond and Boukhtouta [4] for a single reservoir system,
optimal decision rules of systems with modest head variations retain the main
structural properties that were found in Gessford and Karlin [5] (and exploited
for computations in Lamond and Lang [6]) when head effects are neglected.

We also make a standard assumption about the system’s topology. Specifically,
we assume the multiple reservoir system can be represented by an arborescent
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Figure 1: An arborescent network for reservoir releases.

network, as in Lamond and Sobel [7]. That is, we suppose each reservoir has
exactly one outlet for its turbined flows, as in fig. 1. We also suppose there is
no pumping nor interbasin transfers. Moreover, we will also show that our results
remain valid for systems in which the spilled flows bypass some of the downstream
reservoirs. Spillways for flood control can thus be included in the model.

In this paper, we examine the stochastic, arborescent multi-reservoir control
problem with concave rewards, over a finite planning horizon, and the structure
of its optimal solutions. Our main result is that under an appropriate change of
variables, the optimal expected future value functions at each period are increasing
and concave, provided the same is true about the terminal rewards. Archibald et al
[8] also addressed the structure of optimal solutions for arborescent reservoirs, but
under more restrictive hypotheses than ours. Hence their results can be seen as a
particular cases of ours.

The paper is organized as follows. Basic notation and concepts from convex
analysis are briefly reviewed in §2. Then in §3, we describe the arborescent multi-
reservoir model and we explain our monotonicity assumption about the spillage
routing matrix. Next, the standard equations describing reservoir dynamics are
given in §4. Our stochastic optimization model is presented in §5 together with our
main analytical results, followed by concluding remarks in §6.

2 Basic notation

Let I be the identity matrix, ej its jth column (i.e., the jth unit vector) and
e a column vector of 1’s. Depending on context, 0 denotes the number 0 or a
conformable vector or matrix of 0’s. For a matrix A, let AT be its transpose,
A−1 its inverse (when it exists), A•j its jth column and Ai• its ith row. For
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conformable vectors or matrices x and y, the operators (x)+, x ∧ y and x ∨ y
denote componentwise positive part, min and max, respectively. Similarly, we say
that x ≤ y (resp. x ≥ y) if xij ≤ yij (resp. xij ≥ yij) for all i, j.

Now let f(x) be a real function of a vector argument. Then we say that f(x) is
increasing if f(x) ≥ f(x′) whenever x ≥ x′, and we say f(x) is concave if

f (λx + (1 − λ)x′) ≥ λf(x) + (1 − λ)f(x′)

for any scalar λ such that 0 ≤ λ ≤ 1. Similarly, we say that a function g(x, y) of
two vector arguments is jointly concave in x and y if

g (λx + (1 − λ)x′, λy + (1 − λ)y′) ≥ λg(x, y) + (1 − λ)g(x′, y′)

for any scalar λ such that 0 ≤ λ ≤ 1. The following lemma is well known, see,
e.g., Heyman and Sobel [9, pp. 525–526].
Lemma 2.1 Suppose the set C is convex and compact and the function g(x, y) is
jointly concave in x and y for (x, y) ∈ C, and let the function f(x) = maxy g(x, y)
subject to (x, y) ∈ C. Then f(x) is concave on its domain.

3 Network structure

Consider n reservoirs, each with a hydro-plant, forming one or several
arborescences. Each reservoir has one outlet into the turbine penstocks. The
penstock releases either leave the system or flow into another reservoir
downstream. The system can be represented by a directed graph, as in Figure 1,
where each node is associated with a reservoir and each arc is associated with
a release (i.e., a river). We adopt the following conventions: (i) the nodes and
arcs are numbered from 1 to n, (ii) arc i leaves node i, and (iii) if node i is
downstream from node j then i < j. Let B be the node-arc incidence matrix of the
network, and for each node i, define the set Pi(B) of its immediate predecessors,
and the set Qi(B) containing node i itself and all the nodes upstream of i (i.e.,
all predecessors, direct and indirect). Then each column of B has at most two
nonzero entries: bjj = 1 and, if arc j flows into another node i < j, bij = −1.
Well-known, elementary properties of arborescent networks are summarized in the
following lemma, where (iii) follows by transitivity of the relation j ∈ Qi(B).
Lemma 3.1 Suppose B is the incidence matrix of an arborescent network
satisfying the above conventions. Then
(i) its inverse matrix B−1 exists;
(ii) the nonzero entries of B−1 are b−1

ij = 1 for all nodes j ∈ Qi(B);
(iii) b−1

ik ≥ b−1
ij b−1

jk for every i, j, k ∈ {1, . . . , n}.
We remark that the matrices B and B−1 are upper triangular. Moreover, x ≥ 0

implies B−1x ≥ 0, but B−1x ≥ 0 does not imply x ≥ 0. Special cases of
particular interest are the parallel system in which B = B−1 = I , with I the
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identity matrix, and the serial system in which B is bidiagonal with bi,i+1 = −1,
and b−1

ij = 1 for j = i, . . . , n. For the network of fig. 1, we have

B =




1 −1 −1 0
0 1 0 0
0 0 1 −1
0 0 0 1


 and B−1 =




1 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1


 .

Now suppose vector x gives the reservoir contents, with xi the volume of water
contained in reservoir i. Then (B−1x)i is the total amount of water available
in storage upstream of the ith power plant. Similarly, let ci be the ith turbine
efficiency (i.e., each unit volume of water released through turbines at plant i
produces ci units of electricity) and c be a row vector. Then γj = (cB−1)j is
the total generation potential of one unit of water stored in reservoir j, taking into
account all downstream power plants. Then the function

γ(x) = γx = cB−1x (1)

gives the total potential energy stored in the system.
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Figure 2: An arborescent network for spillways.

Now in addition to the turbine penstocks, each reservoir has a sluice that
evacuates excess water without electricity generation. At many sites, the spilled
water then flows on the same river as the turbined flows, to the next reservoir
downstream. At some sites where floods occur frequently, however, a spillway
diverts the water out of the system. For example, at the High Assouan dam in
Egypt, a spillway diverts flood water into a desert valley where it evaporates (see,
e.g., Georgakakos [10]). Our model allows each reservoir to have a spillway that
diverts the spilled water according to one of three possibilities: (i) bypass the
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power plant and flow into the next reservoir downstream, (ii) bypass the power
plant and flow into another reservoir, further downstream, and (iii) bypass the
power plant and flow directly out of the system. The spillways then form another
arborescent network, e.g., as in fig. 2, where the spillway for reservoir 2 satisfies
rule (i), that of reservoir 3 satisfies (iii) and the spillway for reservoir 4 satisfies
(ii).

Let C be the incidence matrix of the spillway network. The above three rules
are equivalent to C−1 ≤ B−1. Indeed, for fig. 2, we have

C =




1 −1 0 −1
0 1 0 0
0 0 1 0
0 0 0 1


 and C−1 =




1 1 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 ≤ B−1.

Special cases are C = B when all spillways are of type (i), and C = I when
all spillways are of type (iii). Other cases with C−1 ≤ B−1 can be seen as
intermediate to these two extreme cases. Most models in the literature assume one
of the two extremes (e.g., C = B in Archibald et al [8], and C = I in Lamond
and Sobel [7]). The results derived in this paper are valid for the two extreme cases
and for all intermediate topologies as well. The following inequalities are useful
in the sequel.
Lemma 3.2 Suppose B and C are incidence matrices such that C−1 ≤ B−1 and
let x be an arbitrary column vector. Then
(i) B−1C ≥ I;
(ii) C−1x ≥ 0 ⇒ B−1x ≥ 0.
Proof. (i) There are two cases.
Case 1: C•j ≥ B•j . Then B−1(C•j − B•j) ≥ 0, i.e., B−1C•j ≥ ej .
Case 2: C•j �≥ B•j . Then C•j = ej − ei for some i < j such that j ∈ Qi(B),
and B−1

k• C•j = b−1
kj − b−1

ki for every k ∈ {1, . . . , n}. By Lemma 3.1(iii), we have

b−1
kj ≥ b−1

ki b−1
ij which implies b−1

kj ≥ b−1
ki because b−1

ij = 1, hence B−1
k• C•j ≥ 0.

In the special case k = j, we have further that b−1
ki = 0 because B−1 is upper

triangular, hence B−1
k• C•j = 1.

(ii) Let z = C−1x ≥ 0. From (i), B−1x = B−1Cz ≥ z ≥ 0. �

We now interpret these properties. For i = 1, . . . , n, let xi be the volume
of water stored in reservoir i, and suppose a volume wi of water is released
through the turbines. Then the new volumes yi are given by y = x − Bw.
Also, w = B−1(x − y) is the release vector that changes the storages from x
to y. Obviously, such a change is possible only if w ≥ 0. Hence Lemma 3.2(ii)
states that when a displacement from x to y is possible through the spillways
(network matrix C), the same displacement is also possible through turbined
releases (network matrix B). Now Lemma 3.2(i) implies B−1Cw ≥ w when
w ≥ 0. Suppose w represents water evacuated through the spillways. Then Cw
gives the net displacement in reservoir contents, and B−1Cw gives the penstock
releases required for attaining the same displacement. The lemma states that these
penstock releases must be greater than or equal to the corresponding spillages.
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4 Reservoir dynamics

To describe the system dynamics, we suppose the planning horizon [0, T ] is
discretized into t equal intervals, and we refer to the interval [t − 1, t) as period t.
Typical intervals could be quarters, months or weeks. We assume water travel
times between all sites are short enough so that all discharges and spillages can be
completed before the end of the period in which they are initiated. At the beginning
of period t, the state of the system is observed. We assume the state st ∈ IRn is the
column vector of reservoir contents in volumetric units. Conceptually, we model
the system’s operation in period t as a sequence of three successive steps: release,
inflow and spill. In practice, of course, all three events would be spread throughout
the period, and their detailed planning would be performed from finer models,
based on target values provided by the long-term model.

Actual hydroelectric generation takes place during the release step. The vector
zt of turbine releases (in volumetric units) is selected, according to a decision rule,
as a function of the state st. It is convenient to define the vector

at = st − Bzt (2)

of stored volumes after turbine releases. Next, during the inflow step, the stored
volumes are increased from the receipt of natural inflows, through the realization
dt of the random vector Dt of inflow volumes, where we assume independance of
D1, . . . , Dt. Finally, during the spill step, all stored volumes in excess of reservoir
capacities are evacuated through the spillways. Let wt be the vector of spilled
volumes. Then

st+1 = at + dt − Cwt (3)

gives the stored volumes at the beginning of period t+1, where a new cycle begins.
The purpose of an optimization model is to find the decision rules to use in

the release and spill steps. The decision rule for period t must specify the turbine
release vector zt, or equivalently, the stored volumes at after turbine releases, as
a function of the observed state st. Assuming the reservoir capacities are limited
and noting that zt ≥ 0 and eqn (2) is equivalent to zt = B−1(st − at), the action
variables must satisfy the constraints

B−1(st − at) ≥ 0 and 0 ≤ at ≤ U. (4)

where Ui is capacity of reservoir i, i = 1, . . . , n. Similarly for the spillages, we
have wt ≥ 0 and eqn (3) gives wt = C−1(at + dt − st+1) so that the next state
variable must satisfy the constraints

C−1(at + dt − st+1) ≥ 0 and 0 ≤ st+1 ≤ U. (5)

 
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2007 WIT PressWIT Transactions on Ecology and the Environment, Vol 104,

River Basin Management IV  37



5 Stochastic optimization

Now, for the purpose of optimization, we find it convenient to replace the state and
action variables st and at, respectively, by

xt = C−1st and yt = C−1at. (6)

Then we assume that, during each period t, t = 1, . . . , T , a reward is earned
depending on the observed state xt and the action taken yt. As mentioned in the
introduction, we suppose this reward is a concave function gt(Et) of the energy
Et produced during the period which, according to eqn (1), is given by

Et = γ(st) − γ(at) = cB−1(st − at) = cB−1C(xt − yt). (7)

We suppose also a terminal reward VT+1(xT+1) is associated with the residual
water storages at the end of the planning horizon, and we assume future rewards are
discounted with a discount factor β such that 0 ≤ β ≤ 1. Now for t = 1, . . . , T ,
let Vt(xt) be the optimal expected cumulative discounted reward from period t to
the end of the planning horizon. In order to define a dynamic programming (DP)
recursion for Vt(xt), we will proceed in two steps.

In the first step, we suppose the action yt is known and the inflows dt have been
observed, so that the spillages have to be determined so as to maximize future
rewards. To do this, we define the function

ht(yt, dt) = max
xt+1

Vt+1(xt+1) (8)

s.t. xt+1 ≤ yt + C−1dt (9)

0 ≤ Cxt+1 ≤ U (10)

where the constraints (9) and (10) were obtained from (5) using eqn (6).
In the second step, we take expectations with respect to the random inflows Dt,

which for simplicity we assume to have a finite distribution, giving

Wt(yt) = E[ht(yt, Dt)], (11)

and next we find the action yt to maximize the sum of rewards for electricity
produced in the current period, gt(Et) with Et in eqn (7), plus discounted expected
future rewards of eqn (11). Doing this, we obtain

Vt(xt) = max
yt

gt

(
cB−1C(xt − yt)

)
+ βWt(yt) (12)

s.t. B−1Cyt ≤ B−1Cxt (13)

0 ≤ Cyt ≤ U (14)

where the constraints (13) and (14) were obtained from (4) using eqn (6).
The DP recursion then starts with the given function VT+1(xT+1) of terminal

rewards, and proceeds by solving successively the functions ht(yt, dt), then
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Wt(yt) and Vt(xt), for t = T, T−1, . . . , 1. If the reservoir system’s only economic
activity is hydroelectric production, then it is reasonable to assume the terminal
reward is an increasing function of the terminal state xT+1. Moreover, under
our previous assumptions about linear electricity generation and concave reward
function, concavity of the terminal reward function is also plausible.
Theorem 5.1 Suppose the function VT+1(xT+1) is increasing and concave. Then
the functions Vt(xt) are increasing and concave, for t = 1, . . . , T .
Proof. We proceed by backward induction, showing the property holds for Vt(xt)
if it holds for Vt+1(xt+1). Concavity of ht(yt, dt) with respect to yt for fixed
dt follows by Lemma 2.1 from concavity of the objective function of eqn (8)
and convexity of the set of points (xt, yt) satisfying inequalities (9) and (10).
Increasingness follows because if xt+1 is feasible for some yt then it is also
feasible for any y′

t ≥ yt. Next, Wt(yt) is increasing and concave because it is
equal to a sum of increasing and concave functions. Then, concavity of Vt(xt)
follows by Lemma 2.1 from joint concavity of the objective function of eqn (12)
in xt and yt and convexity of the set of points (xt, yt) satisfying inequalities (13)
and (14). Finally, increasingness follows from the fact that if yt is feasible in (13)
and (14) for some xt then it is also feasible for any x′

t ≥ xt. To show this, let
x′

t = xt + δ where δ ≥ 0. Then

B−1Cx′
t = B−1Cxt + B−1Cδ ≥ B−1Cxt

because Lemma 3.2(i) implies B−1Cδ ≥ δ ≥ 0. �

Corollary 5.2 The optimal spillages are given, for i = n, n − 1, . . . , 1, by

w∗
it = {ait + dit − Ui +

∑
j∈Pi(C)

w∗
jt}+ (15)

and the optimal solution of eqns (8) to (10) is x∗
t+1 = yt + C−1dt − w∗

t .
Proof. (I, CT ) being a Leontieff matrix, it follows from Cottle and Veinott [11,
Theorem 2] that the feasible set of constraints (9) and (10) contains a maximal
element x∗

t+1 or, equivalently, a minimal spillage w∗
t given by eqn (15). The

resulting reservoir contents s∗t+1 are then given by eqn (3), with corresponding
state variable x∗

t+1 as above. This solution is maximal in the sense that x∗
t+1 ≥ x

for all feasible x, and increasingness of Vt+1(xt+1) implies its optimality in eqn
(8). �

6 Concluding remarks

Although the spillages are easily obtained by eqn (15), finding optimal decision
rules for the electricity generation problem (12)–(14) remains a computational
challenge. The particular structure presented in Archibald et al [8] for C = B and
piecewise linear rewards gt(Et) is easily shown to hold whenever C−1 ≤ B−1,
but it is destroyed when other constraints are added to (13) and (14), such as upper
limits on turbine generation capacities. By contrast, Theorem 5.1 still holds when
new constraints are added, and is not restricted to piecewise linear rewards. It
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could also be extended to the case when the natural inflows are autocorrelated,
by augmenting the state space with a hydrologic component, such as in Turgeon
[12].
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