
Bridging the safety-security software gap

C. W. Axelrod
Delta Risk LLC, USA

Abstract

Software security and safety engineers live in different and often separate
worlds. The former professionals worry about protecting information-processing
systems and data from attacks. The latter are concerned with potential harm
inflicted by malfunctioning or failed industrial control systems (ICSs).
 Some researchers, such as Joseph Weiss, have addressed the need to have
security built into industrial control systems, including safety systems. Weiss
attributes the general lack of security for ICSs to a “hole ... in academia” since
“security is taught in computer science departments, whereas control systems are
taught in various engineering departments.” Others have expressed concern
about who might be liable when information and control systems, are combined,
as in autonomous (driverless) vehicles.
 However, many issues relating to combined security and safety systems are
much broader and more critical than the above. In this paper, which is based on
his recent book, Axelrod takes a holistic view of the consequences of
integrating security-critical information systems and networks with safety-
critical control systems, such as those systems related to avionics, electricity
grids, nuclear power plants, weapons systems, and the like. It is not sufficient to
train software engineers about securing control systems. It is also necessary that
security professionals gain a greater understanding of the control systems to
which their information systems are increasingly being connected. This two-way
exchange of ideas and approaches is crucial for ensuring that systems, which
combine both security-critical and safety-critical components, meet standards
and certification requirements.
Keywords: cybersecurity, safe software systems, cyber-physical systems, systems
of systems, industrial-control systems, systems engineering, software
engineering, computational systems.

Risk Analysis IX 479

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

doi:10.2495/RISK140401

1 Introduction

Software engineers, considering security or safety to be within their purview,
come from markedly different backgrounds. Those dealing primarily with
cybersecurity worry about protecting information-processing systems and data
from externally-generated and internally-originated attacks. Software
professionals, with responsibility for software safety, are mostly concerned with
the potential level of harm inflicted by malfunctions or failures of industrial
control systems (ICSs).
 In today’s world of complex cyber-physical systems and systems of systems,
there is a rapidly increasing need to somehow combine skills and knowledge in
both the software security and safety arenas. Weiss [1] attributes much of the
divergence in viewpoint to the teaching of cybersecurity in computer science
departments and of control-safety in “various engineering departments.” This
author was an electrical engineering undergraduate student at the University of
Glasgow in the 1960s and subsequently a doctoral candidate at Cornell
University. Both information systems and control systems courses were included
in the various curricula. Granted, computer security was at its very early stages at
the time. Nevertheless, while we see increasing specialization, the need to obtain
a broader systems education still holds and various academic institutions have
begun to offer courses and degrees in software system assurance and other
cybersecurity topics. For example, this author contributed to a curriculum in
software assurance [3].
 In his recent book, Axelrod [2] investigates the differences between software
systems safety and security and he suggests how software engineers might
become aware of, and capable in, the knowledge and skills needed to ensure that
software systems are both safe and secure. This paper focuses on these areas.

2 Definitions

To a significant degree, attempts to differentiate between software system
security and safety have been stymied by a lack of consistency of definitions and
understanding within the systems engineering field. Progress has been further
hampered by the fact that newer fields, such as software engineering, have not
yet fully adopted the techniques and discipline of their more mature parents.
 In Figure 1, we illustrate a structure and hierarchy for systems engineering.
The diagram shows systems engineering to consist of a number of elements
including people, processes and technology. For our purposes we look at
technology as comprising hardware and software, and within software we
concentrate on so-called non-functional characteristics, which include security
and safety, each of which has its own branch of engineering. Engineering is
made up of management and assurance activities. The shaded squares illustrate
how the diagram might be used to come up with appropriate terminology, as in
software security engineering. While all interconnecting arrows have not been
included in the diagram for the sake of clarity, the hierarchy can still be used for
a term such as hardware safety engineering, for example. It should be noted that

480 Risk Analysis IX

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

if one does not use such a hierarchy, then one might end up with a term such as
security software engineering, which has a completely different meaning from
software security engineering.
 To be clear, the area that we are addressing here is the safety and security of
software systems, including software and/or firmware embedded in physical
equipment. This difference between information-processing systems and
embedded software is a source of confusion, particularly when it comes to cyber-
physical systems.

Figure 1: Structure and hierarchies of systems engineering,

(adapted from: C. W. Axelrod, Engineering Safe and Secure
Software Systems, © 2013 Artech House).

 One definition of the difference between cyber and physical components of
cyber-physical systems is illustrated in Figure 2.
 As shown in Figure 2, there are essentially two types of software system
within this broader definition of cyber-physical systems, namely, data-processing
software, which usually runs on general-purpose platforms, and computational
software, which controls and manages physical systems, which is often specific
to a particular platform. The latter is termed “embedded software.” The original
definition of cyber-physical systems, as given by the National Science
Foundation [4], covers only the software and equipment on the right-hand side of
Figure 2. Recently, as distributed and network information processing systems,
shown on the left-hand side of Figure 2, are increasingly interconnected to
industrial-control systems. Such systems of systems, which include the smart
grid, are being called cyber-physical systems. It is the latter, which is represented
by all of Figure 2, which we consider here. It should be noted that computer
hardware is also physical but is differentiated from ICS equipment for the
purposes of this paper.

Risk Analysis IX 481

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

Figure 2: Cyber and physical components of cyber-physical systems,
(source: C. W. Axelrod, “Managing the Risks of Cyber-Physical
Systems”, IEEE LISAT Conference, Farmingdale, New York, May
2013, IEEE).

2.1 Safety vs. security

The words “safety” and “security” are often used interchangeably. This can be
confusing, particularly when one is trying to distinguish between the different
cultures and objectives of software engineers working on cyber-physical
systems. Somewhat restricted, but useful, definitions of safety-critical and
security-critical software systems from Boehm [5] are as follows:

• Safety: The system must not harm the world
• Security: The world must not harm the system

 This difference in perspective is a major contributor to the scism between
software safety and security engineers, as discussed below. The goal of this
paper is to suggest how engineers from each of these two silos might improve
communications betweeen the groups and share knowledge, processes, skills and
tools with each other.

3 The security perspective

As mentioned above, information security professionals are generally focussed
on the protection of data-processing systems and communicatons networks
against external attacks and nefarious insider activities, any of which might lead
to misuse, damage or destruction to the processing systems and/or the

482 Risk Analysis IX

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

compromise of applications and data in order to steal sensitive information with
a view to fraud, identity theft, and other crimes. The common mantra of
information security engineers is C-I-A (confidentiality, integrity, availability).
In practice, most attention is paid to confidentiality, which includes security,
privacy and secrecy, as well as to incident response.
 Systems and data protection is achieved mainly through prevention,
deterrence and avoidance. Security incident response usually involves
monitoring, detection, reporting, response, recovery and reconstitution.
 As a result, there has been a veritable proliferation of detection and
prevention tools, such as firewalls, intrusion detection systems (IDSs) and
intrusion prevention systems (IPSs) and, to a lesser degree, deployment of
identity and access management (IAM) systems and computer forensics
techniques. There appears to be growing interest in the security of applications,
which is purportedly the vector commonly used by hackers in the majority of
successful attacks and data breaches. This has resulted in the creation of such
approaches as the “build security in” method of software development. As an
example, DHS (the U.S. Department of Homeland Security) has developed a
website devoted to software assurance at https://buildsecurityin.us-cert.gov/. The
focus of the build-security-in approach is on invoking secure architectures,
implementing secure application design, coding applications based on security
principles (e.g., avoiding applications security risks, eliminating common
vulnerabilities and weaknesses), as well as testing during the development
lifecycle (static testing, code reviews) and in operation (dynamic testing).
Axelrod, among others, has suggested more comprehensive security testing [6]
and improved instrumentation within applications to identify anomalous user and
system behavior [7].
 Traditionally,very little, if any, attention has been paid by information
security professionals to potential physical harm that might result from a
software system malfunction or failure.This is likely due in large part to different
backgrounds, education and training noted by Weise [1].

4 The safety perspective

Safety engineers, on the other hand, pay most attention to hazard risks related to
harm that a malfunctioning or failed system might do to humans and/or the
environment, particularly the type of environmental damage that could impact
human beings physically as well as financially.
 As a consequence, the emphasis of software engineers working with safety-
critical systems is on the testing of various states that might result from a
malfunction or failure of the system. In the realm of safety-critical software
systems, the systems themselves are assigned to categories that relate to the
degree of harm that a malfunctoning or failed system might inflict. As an
example, we see in Table 1 a list of typical aircraft systems and the failure
conditions, per the RTCA/DO-178C standard, to which they are assigned. See
http://en.wikipedia.org/wiki/DO-178C, for an overview of the standard.

Risk Analysis IX 483

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

Table 1: RTCA/DO-178C standard applied to aircraft certification.

System Type of
System

Level A
(Catastrophic)

Level B
(Hazardous)

Level C
(Major)

Level D
(Minor)

Flight control Control X
Cockpit display and
controls

Control X

Flight management Control X
Brakes and ground
guidance

Control X

Centralized alarms
management

Information X

Cabin management Information X
Onboard
communications

Information X

 As it can be seen from the table, malfunctions and failures of systems related
to the control of aircraft would be mostly catastrophic whereas information
systems relating to cabin management and onboard communications are
relatively less hazardous should they malfunction or fail. As a consequence, the
safety standards required for certification are generally much more stringent than
they are for information systems. This readily explains the concentration on
safety issues by engineers who create, test and implement such systems.
However, as aviation systems become more interconnected and accessible from
public networks, so the risk of system compromise increases with the potential
for hackers to tunnel through information systems into control systems and
wreak havoc. Although some companies, which design and develop aviation
systems, have asserted that their applications are isolated and therefore secure,
there is no guarantee that this situation, if indeed true, will continue to exist, or
even that software-development companies, which develop control software, are
fully aware of present and potential dangers. The author discusses this issue at
http://www.bloginfosec.com/2013/04/22/hacking-avionics-systems/, which was
posted on April 22, 2013.

5 Collaboration and communication

In Figure 3, we see that, while information systems and control systems are
usually subject to different threats and exploits and the consequences of
breaches, malfunctions and failures vary for different system categories, when
these systems are integrated into cyber-physical systems, such systems are
exposed to the full range of threats, exploits and consequences.
 This suggests that teams of engineers, who come up with requirements,
designs, coding practices, testing scenarios, and the like, should include both
cybersecurity and safety engineers as active participants. Risks assessments need
to include analyses of both threats and hazards. Program code should follow
secure coding practices and static and dynamic testing should be implemented.
The impact on the environment, were a system to malfunction or fail, needs to be
assessed and systems must be certified accordingly.

484 Risk Analysis IX

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

Figure 3: Consequences of malfunction, misuse or failure of critical systems,
(Source: C.W. Axelrod, Engineering Safe and Secure Software
Systems, © 2013 Artech House).

 In general, aspects of software assurance for both security and safety need to
be combined in an overall assessment of risks of exploitation of, and damage
from, systems and the best-of-breed processes and tools need to be carried over
from each silo to the other. Details of the security and safety aspects of the
software system development lifecycle and the trading of knowledge, skills and
tools between software safety and security subject-matter experts are provided in
Axelrod [8].

6 Conclusion

We have seen that there exists a considerable gap between the orientation and
focus of those with responsibility for the security and safety of software systems
brought about by different education and training and reward systems that favor
a concentration by professionals and researchers on one aspect or the other. This
situation might be considered to be acceptable when information systems and
control systems occupy separate and distinct domains. However, we are seeing
rapidly escalating complexity and risk as software-intensive systems, which were
previously separated, are interconnected to form cyber-physical systems, which
become subject to the risks of both security-critical and safety-critical systems.
In order to mitigate all of these risks, cybersecurity professionals and software
safety engineers must form collaborative alliances to ensure that software
systems meet the superset of requirements for the resulting systems of systems.

Risk Analysis IX 485

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

References

[1] Weiss, J., Protecting Industrial Control Systems from Electronic Threats,
Momentum Press: New York, p. ix, 2010.

[2] Axelrod, C.W., Engineering Safe and Secure Software Systems, Artech
House: Norwood, MA, 2012.

[3] Carnegie Mellon University Software Engineering Institute (CMU SEI),
Software Assurance Curriculum Project: Volume I: Master of Software
Assurance Reference Curriculum, Technical Report CMU/SEI-2010-TR-
005, ESC-TR-2010-005, CMU SEI, 2010. Available at
http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm.

[4] National Science Foundation (NSF), Cyber-Physical System (CPS),
Program Solicitation NSF 10-515, 2010, www.nsf.gov/pubs/
2010/nsf10515/nsf10515.htm.

[5] Boehm, B.W., Characteristics of Software Quality, North-Holland: New
York, 1978.

[6] Axelrod, C.W., “The Need for Functional Security Testing,” CrossTalk,
24(2), pp. 17-21, 2011.

[7] Axelrod, C.W., “Creating Data from Applications for Detecting Stealth
Attacks,” CrossTalk, 24(5), pp. 19-24, 2011.

[8] Axelrod, C.W., “Applying Lessons from Safety-Critical Systems to
Security-Critical Software,” 2011 IEEE LISAT (Long Island Systems,
Applications and Technology) Conference, Farmingdale, NY, May 2011,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5784222&qu
eryText%3DAxelrod+C.W.

486 Risk Analysis IX

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 47, © 2014 WIT Press

