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Abstract 

Exploiting the mathematical framework of favourability function modelling and 
of software designed for spatial target mapping, experiments are discussed to 
measure the effects of uncertainty of spatial support. A database that has been the 
focus of landslide hazard prediction and risk assessment of buildings, roads and 
land uses is reanalyzed gradually modifying the spatial characteristics of 
supporting patterns of the proposition of “presence of landslide occurrences.” 
Boundary fuzziness of categorical mapping units and filtering of continuous 
fields, represent weakening of spatial relationships. Comparisons are made of 
ranges of ranks representing uncertainties of class membership in target patterns 
obtained by iterative cross-validations. The impacts of the different spatial 
uncertainties on risk assessment patterns are visualized using progressive 
combinations of uncertainties of target patterns to resolve risk equations and 
study the consequent changes in risk values. 
Keywords: favourability modelling, target mapping, spatial uncertainty, spatial 
support, landslide hazard, landslide risk. 

1 Introduction 

It is now over fifty years that attention is being given to spatially distributed data 
for its integration into indices for development planning. Examples are resource 
exploration of mineral occurrences or locating hazardous sites such as zones 
likely to be affected by landslides or by floods. Most emphasis has been on 
methods of spatial statistics and on the introduction of expert’s opinions to 
complement data scarcity or insufficiency. 
     The abundance of digital data today and the consequent feasibility of 
constructing well focused spatial databases for regional planning provide further 
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challenges: testing and interpreting the information content of the databases and 
navigating through the many options encountered to generate manageable 
representations. Instances of these are the spatiotemporal distribution of future 
discoveries or that of future hazardous occurrences. It means that not only a 
database must adequately and acceptably represent the distribution and dynamics 
of natural processes but also should allow measures of spatial uncertainty. In 
practice it must offer criteria for deciding on the relative significance and 
strength of the spatial support. The task becomes similar to the one in computer 
war games in military exercises where sequences of simulations are generated to 
predict consequences of modifying spatial relationships. 
     In this contribution the impacts of different spatial uncertainties on landslide 
risk assessment patterns are visualized using progressive combinations of 
uncertainties of target patterns to resolve risk equations and study the consequent 
changes in risk value distributions. A database that has been the focus of 
landslide hazard prediction and risk assessment of buildings, roads and land uses 
is reanalyzed gradually modifying the spatial characteristics of supporting 
patterns of the proposition of “presence of landslide occurrences.” Following a 
description of the database, a brief introduction is provided to favourability 
modelling and its application software. Experiments are then discussed on 
landslide hazard prediction and risk assessment in the Deba Valley in northern 
Spain. The spatial data have been modified to weaken the spatial support and 
degrade the quality of prediction and assessment introducing levels of greater 
uncertainty. Conclusions are drawn on the importance of simulating spatial 
changes.  

2 The Deba V  alley spatial database 

The Deba Valley is part of the Basque Province of Guipuzcoa up from the coast 
of northern Spain. The study area is located in the lower part of the valley and 
cover approximately 140 km2, with maximum elevation just below 700 m a.s.l. 
Main annual rainfall reaches 1500 mm with episodes of over 100 mm/day every 
few years. Lithologies in the area are: limestone, marl, claystone, sandstone, 
flysch and volcanics, of the Cretaceous and Paleogene of the Basque-Cantabrian 
Pyrenees. Average slope gradient is about 22°, and regolith thickness ranges 
from 50 cm to 3 m. Shallow translational landslides and flows triggered by 
rainfalls are the most common types of mass movements in the area whose 
landscape is highly influenced by reforestation, cultivation, urbanizations, 
infrastructures and industrial activities. Population density reaches 500/km2. 
     Remondo et al. [1–3], have constructed a digital database for landslide hazard 
studies later extended for risk assessment. Through photo-interpretation and field 
work, 1123 shallow translational landslides and associated flows were mapped 
and dated: 906 prior to 1997, and 217 for the period 1998–2001. The average 
size of their trigger zones is approximately 400 m2, so that it was decided to 
represent each by a single picture element or pixel of 10 m resolution. The same 
digital resolution was used for the rest of the database that was to represent the 
typical setting of the landslides: 25 lithologic units, 9 land use classes (both 
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categorical), and elevation, aspect, curvature and slope (continuous fields). The 
study area falls within a rectangular raster of 1886 pixels by 1555 lines, and 
occupies 1,393,541 pixels. 
     Remondo et al. [2] first modelled landslide hazard in the area to predict the 
distribution of future likely landslides using the spatiotemporal distribution of 
the 1123 landslide trigger zones and their spatial relationships with the 
categorical and continuous digital maps. Later, Remondo et al. [3] obtained a 
semi-quantitative risk-assessment augmenting the database with socioeconomic 
spatial elements: 5 types of roads, 3194 buildings and 9 types of land uses. They 
were made into co-registered digital maps for which values and vulnerabilities 
were estimated and compiled as 10 m pixels. 
     The Deba Valley spatial database that is used in this contribution has also 
been turned into a case study for training decision makers [4]. 

3 Favourability modelling: approach, software and strategies 

Favourability modelling is based on constructing a proposition within the study 
area as a mathematical statement that has to be proven true or false given the 
spatial evidence.  Such evidence is established for the study area as a function of 
the spatial relationships established between a direct supporting pattern of the 
proposition, DSP, and indirect supporting patterns, ISPs.  In the Deba Valley 
study area, for instance, the DSP is the spatial distribution of a well defined set 
of occurrences, such as the 1123 shallow translational landslides and associated 
flows. The ISPs are then the distributions of the various categorical mapping 
units and the values of the continuous fields, used to represent the typical 
settings of the DSP: lithologies, land use classes and values of continuous fields 
of topographic aspect, curvature, digital elevation and slopes.  
     The spatial relationships are conveniently calculated from co-registered 
digital images with a given common spatial resolution: in our case of 10 m for all 
DSP and ISPs. Example of a proposition is: “Pi: a point i in the study area is 
affected by a part of a future landslide of type shallow translational landslide 
and associated flows | given the presence of the classes and values of spatial 
evidence.” Different interpretations are possible for such a favourability function: 
possibility, likelihood, certainty, belief and plausibility, conditional probability 
and more, using the corresponding modelling assumptions. Here we will limit 
our analyses to the empirical likelihood ratio function or ELR, amply discussed 
elsewhere [5]. The categorical ISPs are transformed into normalized frequencies 
and the continuous fields into density functions, so that the ELR ratios are 
computed between the functional values in the presence of the landslide trigger 
zones with those in their absence. Ratios for overlapping ISPs are combined by 
means of the rules and assumptions of the model. ELR values range from 0 to . 
     The application of a favourability function must be properly structured in 
time and space and can be used as predictor of future landslide occurrences via 
assumptions or scenarios of spatiotemporal nature, e.g., similarity of settings 
through the study area, of database sufficiency, or similarity of frequency of 
occurrence through time etc. 
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     Criticism on applications of favourability modelling [6] apparently justified 
the programming of STM, a software for spatial target mapping developed for 
research and training [4, 7] as a tool accessory to conventional geographic 
information systems, GIS. Besides data transfer to and from GIS, STM provides 
several prediction models: fuzzy sets, likelihood ratio, linear and logic 
regression, and Bayesian probability functions. In addition it allows: spatial data 
input modifications, modes of iterative cross-validations, generation of 
prediction, target, uncertainty and uncertainty/target combination patterns, with 
associated statistics and prediction-rate tables. We will describe these in the 
application section that follows. 
     In particular, with the selection of ISPs as input to modelling, transformation 
parameters are available. Linked with the digital maps of categorical ISPs, such 
as lithology and land use, inputs are the respective boundary images of the units 
as thin lines of one-pixel width. A number of pixels in neighbourhood parameter 
allows to generate fuzzy boundaries of desired width, say 5, 10, 15 etc. For the 
continuous fields ISPs, a spread parameter of continuous values is used to obtain 
an appropriately smooth distribution before proceeding with further analyses. 
These two parameters are indicated as N and S, respectively, used for artificially 
fuzzyfying categorical boundaries and smoothing continuous fields. 
     Of a study area, STM generates equal-area rankings as classifications termed 
prediction patterns. The statistics for the DSP/ISPs spatial relationships can also 
be extended from a study area to another, assumed to have similar settings and to 
generate a prediction pattern there. Within a study area, the DSP can be 
partitioned to obtain sequences of prediction patterns and of associated statistics 
by iterative cross-validations according to one of the following strategies: 

(a) Sequential selection of a given number of occurrences as DSP; 
(b) Sequential exclusion of a given number of occurrences as DSP; 
(c) Random selection of a given number of occurrences as DSP. 

     By cross-validation the statistics of the relative distribution of the occurrences 
in the equal area ranked classes of the prediction pattern is obtained as a 
prediction-rate table. The selected subset of the available occurrences is used to 
apply the modelling and the remainder is used to study their distribution across 
the equal area ranked classes obtained by modelling. From the iterative 
processing strategies in (a), (b) or (c), or other combinations of those, a sequence 
of prediction patterns is generated. A target pattern combines them by means of a 
number of optional statistics: basic statistics such as sample average and variance 
or sample median and range, jackknife statistics as average and range, or rank-
based statistics as median range and range of ranks.  
     For instance, a target pattern can be a digital image with pixel values as 
means of a sequence of prediction patterns from iterations in (a), (b) or (c). An 
associated uncertainty pattern of class membership in the target pattern has 
ranked values that represent the standard deviation at each pixel. Furthermore, a 
given % of the lower rank values, corresponding to a narrower range in an 
uncertainty pattern, can be used to select only the values in a target pattern that 
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correspond to those lower uncertainty values, thus obtaining a combination 
pattern of uncertainty and target. 
     Iterative cross-validation strategies allow establishing the relative reliability, 
stability or acceptability of the prediction and target patterns. These are 
represented as prediction-rate tables, histograms and cumulative curves. 
     The associated SRA software for spatial risk analysis [6, 7] is complementary 
to STM in that it takes as part of the inputs a prediction pattern and a prediction-
rate table. The table contains the cumulative frequency of occurrences for all 
equal area ranked classes of predicted hazard and is then converted, via a 
scenario, into a probability of occurrence histogram either directly or via  
a monotonically decreasing transformation or as a fitted function. 
     In addition SRA requires as inputs co-registered categorical images of 
socioeconomic indicators representing elements exposed to risk, such as roads, 
buildings, land uses (and persons in case of casualties), with accompanying 
tables of vulnerabilities and estimated values. From all those inputs SRA 
calculates Risk Assessment patterns and associated statistics, either for single 
element type or as aggregation of them. 
     The following section deals with experiments that exploit many of the 
features of STM and SRA described here. The purpose is to expose aspects that 
contain more general significance out of the Deba Valley database. 
 

4 Weakening of spatial support 

Experiments on landslide hazard prediction and risk assessment in the Deba 
Valley study area have been discussed in a number of studies [2–4]. Here we 
want to explore situations in which the support for spatial relationships becomes 
gradually weaker to simulate poor quality of prediction/risk patterns. This is to 
provide insight on the question: “when to decide that a database is too poorly 
representing future hazardous occurrence distribution?” Or, in other words: “how 
to compare a poor prediction with a good one?” 
     The application performed here uses the digital image with the one-pixel 
distribution of the 906 pre-’97 landslides and that of the 217 post- 97 as DSP 
that are shown in Figure 1a and 1b, respectively, with the study area as 
background. As ISPs to characterize the settings of the landslides it uses two 
categorical digital images, lithology and land use, termed l and u, and four 
continuous ones, aspect, curvature, digital elevation and slope, not shown here, 
termed A, C, D and S. The ELR model is first applied using the entirety of 1123 
landslides as DSP and the luACDS as ISPs. This is because the prediction pattern 
obtained from them is the most detailed as it uses all the DSP data available. 
However, we do not know as yet the relative quality of its classes without 
performing their cross-validation. This is done by repeating the modelling using 
only the 906 pre- 97  landslides and verifying the ranking of its classes with the 
distribution of the 217 post- 97 landslides.  Such  a cross-validation is based on 
the time partitioning of the DSP and is the most natural when time partitioning is 
available. 
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Figure 1: Deba Valley study area. Distribution is shown of the 906-pre’97 
shallow translational landslides and associated flows in red (a) and 
that of the 217-post’97 in black (b). Sizes of trigger zones are 
exaggerated for visibility. Prediction pattern obtained using the entire 
distribution of the 1123 landslides as DSP and the luACDS as ISPs, 
with 5N4S (c), 20N16S (d), and 40N32S (e). The legend shows 
pseudo-colours for different groupings of ranked classes. In (f) the 
three cumulative prediction-rate curves obtained using only the 906-
pre’97 landslides as DSP and the luACDS as ISPs, to predict the 217-
post’97. 
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     Three analyses were made in which the sets of ISPs were modified as 
follows: 

(i) Using 5 as number of pixels in the neighbourhood of categorical 
boundaries and 4 as spread parameter for continuous fields, 5N4S; 

(ii) Using 20 and 16, respectively, 20N16S; and 
(iii) Using 40 and 32, respectively, 40N32S. 

     The corresponding ELR prediction patterns are shown in Figures 1c, 1d and 
1e, as pseudo-colour images with selected groupings, fixed for visibility, of 200 
ranked classes of equal area, each of 0.5% of the study area as default. We can 
see the loss of detail due to the parameters 5N4S, 20N16S and 40N32S. 
     To study the relative quality of those prediction patterns, three more 
prediction patterns were obtained using only the 906 pre-’97 as DSP and 
representing the distribution of the remaining 217 post-’97 in them as cumulative 
prediction-rate curves, as shown in Figure 1f. On the horizontal axis we have the 
proportion of study area classified as hazardous in decreasing order of 200 
ranked values and on the vertical axis the corresponding proportion of the 217 
post-’97 landslides. The steeper is the curve at the origin the better is the 
prediction pattern: the cumulative curve can be interpreted in terms of cost-
benefit. We can easily see that prediction-rate curve with 5N4S is better than that 
with 20N16S, which in turn is better that that with 40N32S. However, we can see 
that even prediction-rate curve with 5N4S indicates a not particularly good 
prediction. It is due to the variety of geological/land use settings of the study area 
elongated from the sea coast line to the northeast to inland towards southwest. 
ELR values are higher for muddy flysh, marly limestone and calcareous flysh 
lithologies, and lower for other marly units, poorly graded gravel and silty sands, 
and again higher for grasslands and cultivated areas. All other categorical units 
and all continuous fields contribute marginally to the ELR values. 
     In our analyses, for instance, 0.1 of the study area with the highest predicted 
values contains 0.42 of the 217, 0.2 contains 0.61 and 0.3 contains 0.74 with 
5N4S. The corresponding proportions with 20N16S and 40N32S are 0.37, 0.58, 
0.70, and 0.36, 0.54, 0.60, respectively. The cumulative prediction-rate curves in 
Figure 1f are critical to estimate the probability of occurrence for each class and 
each pixel for risk assessment later on using an appropriate scenario. We can 
consider this part of the analysis as preparation of hazard prediction for risk 
assessment. Let us now consider a complete procedure for it in eight steps.  
Table 1 describes the steps to be considered of a general framework for 
favourability modelling of hazard and risk. 
     In the procedure described in Table 1, the eight steps require decisions, 
selection of parameters, testing of different alternatives, assumptions and 
scenarios. For instance, besides the selection of the study area, what becomes 
critical are those of choosing the DSP, the ISPs, of partitioning of the study area 
and/or the DSP, of selecting a threshold for the uncertainty of class membership 
and of interpreting the classes of costs in the Risk pattern.  
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Table 1:  Eight steps for modelling hazard prediction and risk assessment with 
favourability modelling, applied to luACDS ISPs with parameters 
5N4S, 20N16S and 40N32S, using 1123, 906 and 217 landslide 
distributions as DSP. 

Step Description 
1 
 
2 
 
 
3 
 
 
 
 
 
4 
 
 
 
5 
 
 
6 
 
 
 
 
 
 
 
7 
 
 
 
 
 
 
 
8 
 

Prediction pattern 1: use distribution of set of 1123 landslides as DSP 
and the six ISPs, luACDS, to be used in all predictions. Figs. 1a, 1b. 
Prediction pattern 2: use the distribution of only the 906 pre-’97 
landslides and cross-validate with that of the 217 post-’97 to get the 
prediction-rate curve. It provides a measure of relative quality. Fig. 1f. 
Target and Uncertainty patterns: iterative predictions and cross-
validations to establish prediction robustness. Example: exclude 
successively 50 landslides from the 906 pre-’97 and generate 18 
prediction patterns. Using rank-based statistics, the median values of 
the 18 values per pixel provides the Target and the range of ranks the 
Uncertainty pattern of class membership. Figs. 2ab, 3ab and 4ab. 
Combination pattern of Uncertainty and Target patterns: selection 
of reasonable or convenient proportion of lower values of Uncertainty 
to isolate the corresponding Target values, e.g., 50%. Figs. 2c, 3c and 
4c. 
Introduction of socioeconomic elements at risk: categorical digital 
images of identical resolution with a associated tables of values and 
vulnerabilities, for roads, buildings and land uses. Not shown here. 
Modelling the prediction-rate table: table from Step 2 is transformed 
into a table of probability of occurrence for each class and for each 
pixel, if necessary converted to a monotonically non decreasing 
function and/or by a fitted exponential function. Figs. 2d, 3d and 4d. 
The example of scenario used assumes that an occurrence rate of 217 
one-pixel landslides in 4 years remains constant for the next 50 years 
since 2001 (217/4 = 54.25 x 50 = 2712.5  2713 one-pixels landslides 
expected). 
Risk pattern: it is generated using the prediction pattern from Step 1, 
the elements exposed, values and vulnerabilities from Step 5, and the 
modelled probability of occurrence function from Step 6. The risk 
equation is computed and aggregated for roads, building and land uses. 
In it classes of expected damage per 10 m pixels in € are tentatively 
reclassified in 10 groups from 100 classes. Figs 2e, 3e and 4e. Only the 
highest 4 1% classes have values > 1 € and are indicated by black 
pixels. 
Combination pattern of Uncertainty and Risk patterns: use the 
Combination pattern of 50% lower values of uncertainty in Step 4 to 
obtain the corresponding Combination Uncertainty/Risk pattern with 
values corresponding to relatively low uncertainty. Figs. 2f, 3f and 4f. 
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     The Risk patterns in the three experiments are visibly different, however, in 
all of them it is the highest 4 classes that represent risk values greater than  
1.00 €/pixel. Table 2 shows the respective expected cost of a pixel for those 
classes. The expected total costs for the Risk patterns in the study area are as 
follows: 9,104,146 € (5N4S), 9,649,109 (20N16S) and 12,816,878 (40N32S). 
 

Table 2:  Expected cost of a pixel > 1 € for the four highest risk classes in 
experiments 5N4S, 20N16S and 40N32S. 

Class € 5N4S  € 20N16S  € 40N32S  € 
97 > 1         1.64        1.08         1.50 
98 > 2         2.94        2.33         2.68 
99 > 5         5.29        5.23         5.04 

     100 > 10       11.98       16.39       12.33 
 
 

5 Concluding remarks 

Many aspects of spatial prediction modelling provide challenges that demand 
experimentations on representative databases. Generalizing the procedure 
applied we can question some or all of the following points: 

(i) Database: Study area, direct and indirect supporting patterns, homogeneity 
of occurrences and settings, time/space partitions for cross-validation. 

(ii) Prediction patterns: How good are they? Did we overfit? Is it enough to use 
prediction-rate tables via relative ranking? 

(iii) Modelling: What happens if conditional independence assumptions, required 
by most models, are not respected? 

(iv) Scenarios: How to formulate and construct them to estimate the probability 
of occurrence essential for risk assessment? How far back in time should we 
look at the statistics of occurrences and to predict how far in the future? 

(v) Expected costs: How representative are such costs? How to classify and 
interpret them, and display their spatial configuration? 

     Because of these many challenging aspects due to variability of all points 
discussed, we consider empirical analyses of databases more in demand than the 
development of new mathematical models. The distribution and sharing of 
spatial databases among expert organizations or researchers is perhaps a more 
promising way to deepen insight on how to manage spatial data for modelling 
the future as to the discovery of new natural resources or to the identification of 
future hazardous zones. Such a sharing is on its own a considerable challenge. 
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Figure 2: Target, Uncertainty and Risk patterns with probability of occurrence 
histograms for the Deba Valley study area for analyses with 5N4S 
parameters for the luACDS ISPs. Target pattern obtained using the 
distribution of the 906-pre’97 landslides and the 906-50 x 18 iterative 
cross-validation (a), the Uncertainty pattern (b) and the 50% 
Uncertainty/Target Combination pattern (c). In (d) is the 
transformation of the corresponding prediction-rate in Figure 1d, into 
a probability of occurrence histogram in red, and in gray the fitted 
function to its monotonically decreasing transformation. The Risk 
pattern is in (e), with the four classes with estimated costs > 1 € in 
black, and the corresponding 50% Uncertainty/Risk Combination 
pattern of (c) in (f). In the risk legend are ten classes with expected 
costs in €. 
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Figure 3: Target, Uncertainty and Risk patterns with probability of occurrence 
histograms for the Deba Valley study area for analyses with 20N16S 
parameters for the luACDS ISPs. Target pattern obtained using the 
distribution of the 906-pre’97 landslides and the 906-50 x 18 iterative 
cross-validation (a), the Uncertainty pattern (b) and the 50% 
Uncertainty/Target Combination pattern (c). In (d) the transformation 
of the corresponding prediction-rate in Figure 1d, into a probability of 
occurrence histogram in red and in gray the fitted function to its 
monotonically decreasing transformation. The Risk pattern is in (e), 
with the four classes with estimated costs > 1 € in black, and the 
corresponding 50% Uncertainty/Risk Combination pattern of (c) in 
(f). In the risk legend are ten classes with expected costs in €. 
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Figure 4: Target, Uncertainty and Risk patterns with probability of occurrence 
histograms for the Deba Valley study area for analyses with 40N32S 
parameters for the luACDS ISPs. Target pattern obtained using the 
distribution of the 906-pre’97 landslides and the 906-50 x 18 iterative 
cross-validation (a), the Uncertainty pattern (b) and the 50% 
Uncertainty/Target Combination pattern (c). In (d) the transformation 
of the corresponding prediction-rate in Figure 1d, into a probability of 
occurrence histogram in red and in gray the fitted function to its 
monotonically decreasing transformation. The Risk pattern is in (e), 
with the four classes with estimated costs > 1 € in black, and the 
corresponding 50% Uncertainty/Risk Combination pattern of (c) in 
(f). In the risk legend are ten classes with expected costs in €. 
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